41 |
Low-rank Tensor Methods for PDE-constrained OptimizationBünger, Alexandra 14 December 2021 (has links)
Optimierungsaufgaben unter Partiellen Differentialgleichungen (PDGLs) tauchen in verschiedensten Anwendungen der Wissenschaft und Technik auf. Wenn wir ein PDGL Problem formulieren, kann es aufgrund seiner Größe unmöglich werden, das Problem mit konventionellen Methoden zu lösen. Zusätzlich noch eine Optimierung auszuführen birgt zusätzliche Schwierigkeiten. In vielen Fällen können wir das PDGL Problem in einem kompakteren Format formulieren indem wir der zugrundeliegenden Kronecker-Produkt Struktur zwischen Raum- und Zeitdimension Aufmerksamkeit schenken. Wenn die PDGL zusätzlich mit Isogeometrischer Analysis diskretisiert wurde, können wir zusätlich eine Niedrig-Rang Approximation zwischen den einzelnen Raumdimensionen erzeugen. Diese Niedrig-Rang Approximation lässt uns die Systemmatrizen schnell und speicherschonend aufstellen. Das folgende PDGL-Problem lässt sich als Summe aus Kronecker-Produkten beschreiben, welche als eine Niedrig-Rang Tensortrain Formulierung interpretiert werden kann. Diese kann effizient im Niedrig-Rang Format gelöst werden. Wir illustrieren dies mit unterschiedlichen, anspruchsvollen Beispielproblemen.:Introduction
Tensor Train Format
Isogeometric Analysis
PDE-constrained Optimization
Bayesian Inverse Problems
A low-rank tensor method for PDE-constrained optimization with Isogeometric Analysis
A low-rank matrix equation method for solving PDE-constrained optimization problems
A low-rank tensor method to reconstruct sparse initial states for PDEs with Isogeometric Analysis
Theses and Summary
Bibilography / Optimization problems governed by Partial Differential Equations (PDEs) arise in various applications of science and engineering. If we formulate a discretization of a PDE problem, it may become infeasible to treat the problem with conventional methods due to its size. Solving an optimization problem on top of the forward problem poses additional difficulties. Often, we can formulate the PDE problem in a more compact format by paying attention to the underlying Kronecker product structure between the space and time dimension of the discretization. When the PDE is discretized with Isogeometric Analysis we can additionally formulate a low-rank representation with Kronecker products between its individual spatial dimensions. This low-rank formulation gives rise to a fast and memory efficient assembly for the system matrices. The PDE problem represented as a sum of Kronecker products can then be interpreted as a low-rank tensor train formulation, which can be efficiently solved in a low-rank format. We illustrate this for several challenging PDE-constrained problems.:Introduction
Tensor Train Format
Isogeometric Analysis
PDE-constrained Optimization
Bayesian Inverse Problems
A low-rank tensor method for PDE-constrained optimization with Isogeometric Analysis
A low-rank matrix equation method for solving PDE-constrained optimization problems
A low-rank tensor method to reconstruct sparse initial states for PDEs with Isogeometric Analysis
Theses and Summary
Bibilography
|
42 |
Isogeometric Bezier Dual Mortaring and ApplicationsMiao, Di 01 August 2019 (has links)
Isogeometric analysis is aimed to mitigate the gap between Computer-Aided Design (CAD) and analysis by using a unified geometric representation. Thanks to the exact geometry representation and high smoothness of adopted basis functions, isogeometric analysis demonstrated excellent mathematical properties and successfully addressed a variety of problems. In particular, it allows to solve higher order Partial Differential Equations (PDEs) directly omitting the usage of mixed approaches. Unfortunately, complex CAD geometries are often constituted by multiple Non-Uniform Rational B-Splines (NURBS) patches and cannot be directly applied for finite element analysis.parIn this work, we presents a dual mortaring framework to couple adjacent patches for higher order PDEs. The development of this formulation is initiated over the simplest 4th order problem-biharmonic problem. In order to speed up the construction and preserve the sparsity of the coupled problem, we derive a dual mortar compatible C1 constraint and utilize the Bezier dual basis to discretize the Lagrange multipler spaces. We prove that this approach leads to a well-posed discrete problem and specify requirements to achieve optimal convergence. After identifying the cause of sub-optimality of Bezier dual basis, we develop an enrichment procedure to endow Bezier dual basis with adequate polynomial reproduction ability. The enrichment process is quadrature-free and independent of the mesh size. Hence, there is no need to take care of the conditioning. In addition, the built-in vertex modification yields compatible basis functions for multi-patch coupling.To extend the dual mortar approach to couple Kirchhoff-Love shell, we develop a dual mortar compatible constraint for Kirchhoff-Love shell based on the Rodrigues' rotation formula. This constraint provides a unified formulation for both smooth couplings and kinks. The enriched Bezier dual basis preserves the sparsity of the coupled Kirchhoff-Love shell formulation and yields accurate results for several benchmark problems.Like the dual mortaring formulation, locking problem can also be derived from the mixed formulation. Hence, we explore the potential of Bezier dual basis in alleviating transverse shear locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity. Interpreting the well-known B projection in two different ways we develop two formulations for locking problems in beams and nearly incompressible elastic solids. One formulation leads to a sparse symmetric symmetric system and the other leads to a sparse non-symmetric system.
|
43 |
Adaptive Isogeometric Analysis of Phase-Field ModelsHennig, Paul 11 February 2021 (has links)
In this thesis, a robust, reliable and efficient isogeometric analysis framework is presented that allows for an adaptive spatial discretization of non-linear and time-dependent multi-field problems. In detail, B\'ezier extraction of truncated hierarchical B-splines is proposed that allows for a strict element viewpoint, and in this way, for the application of standard finite element procedures. Furthermore, local mesh refinement and coarsening strategies are introduced to generate graded meshes that meet given minimum quality requirements. The different strategies are classified in two groups and compared in the adaptive isogeometric analysis of two- and three-dimensional, singular and non-singular problems of elasticity and the Poisson equation. Since a large class of boundary value problems is non-linear or time-dependent in nature and requires incremental solution schemes, projection and transfer operators are needed to transfer all state variables to the new locally refined or coarsened mesh. For field variables, two novel projection methods are proposed and compared to existing global and semi-local versions. For internal variables, two different transfer operators are discussed and compared in numerical examples.
The developed analysis framework is than combined with the phase-field method. Numerous phase-field models are discussed including the simulation of structural evolution processes to verify the stability and efficiency of the whole adaptive framework and to compare the projection and transfer operators for the state variables. Furthermore, the phase-field method is used to develop an unified modelling approach for weak and strong discontinuities in solid mechanics as they arise in the numerical analysis of heterogeneous materials due to rapidly changing mechanical properties at material interfaces or due to propagation of cracks if a specific failure load is exceeded. To avoid the time consuming mesh generation, a diffuse representation of the material interface is proposed by introducing a static phase-field. The material in the resulting transition region is recomputed by a homogenization of the adjacent material parameters. The extension of this approach by a phase-field model for crack propagation that also accounts for interface failure allows for the computation of brittle fracture in heterogeneous materials using non-conforming meshes.
|
44 |
Optimisation de formes de coques minces pour des géométries complexes. / Shape optimization of thin shell structures for complex geometries.Julisson, Sarah 02 December 2016 (has links)
Au cours des processus de conception,l’optimisation de formes apporte aux industriels dessolutions pour l’amélioration des performances desproduits. En particulier, les structures minces quiconstituent environ 70% d’un véhicule, sont une préoccupationdans l’industrie automobile. La plupartdes méthodes d’optimisation pour ces structures surfaciquesprésentent certaines limites et nécessitent desexpertises à chaque niveau de la procédure d’optimisation.L’objectif de cette thèse est de proposer une nouvellestratégie d’optimisation de formes pour les coquesminces. L’approche présentée consiste à exploiter leséquations de coques du modèle de Koiter en se basantsur une analyse isogéométrique. Cette méthode permetde réaliser des simulations sur la géométrie exacteen définissant la forme à l’aide de patchs CAO. Lesvariables d’optimisation choisies sont alors les pointsde contrôle permettant de piloter leur forme. La définitiondes patchs permet également de dégager ungradient de forme pour l’optimisation à l’aide d’uneméthode adjointe.Cette méthode a été appliquée pour des critères mécaniquesissus des bureaux d’études Renault. Des résultatsd’optimisation pour un critère de compliance sontprésentés. La définition et l’implémentation de critèresvibro-acoustiques sont discutés à la fin de cette thèse.Les résultats obtenus témoignent de l’intérêt de la méthode.Toutefois, de nombreux développements serontnécessaires avant d’être en mesure de l’appliquer dansl’industrie. / During the design process, optimizationof shapes offers manufacturers solutions for improvingproducts performances. In particular, thin shellstructures that represent about 70 % of a vehicle, area concern in the automotive industry. Most optimizationmethods for surface structures have limitationsand require expertise at every level of the optimizationprocedure.The aim of this thesis is to propose a new strategyfor the shape optimization of thin shell structures.The approach presented rely on using the Koiter’sshell model based on an isogeometric analysis. Thismethod allows for simulations on the exact geometryby defining the shape using CAD patches. Selectedoptimization variables are the control points used tocontrol the shape of the CAD patches. Variations ofthese points allows to scan a wide design space withfew parameters. The definition of patchs also enablesto find a gradient with respect to the shape for theoptimization by using the adjoint state method.This method was applied to mechanical criteria fromthe Renault design offices. Optimization results for acompliance criterion are presented. The definition andimplementation of vibro-acoustic criteria are discussedat the end of this thesis. The results demonstratethe interest of the method. However, many developmentswill be needed before being able to apply it inthe industry.
|
45 |
Modeling Stokes Flow Using Hierarchical Structure-Preserving B-SplinesShepherd, Kendrick Monroe 01 March 2015 (has links) (PDF)
A new spline space, the hierarchical structure-preserving B-spline space, is introduced and implemented in the analysis of Stokes flow. The space, when properly constrained, is shown to be stable and to have at least optimal convergence rates in the velocity field and suboptimal convergence rates in the pressure field. However, results show that superoptimal convergence can often be expected in the pressure field, likely due to error reduction in the velocity field. Like other hierarchical spline spaces, these splines are shown to greatly increase accuracy and to drastically lower computation times for analyses on domains whose solution fields have singularities or could otherwise benefit from local refinement. With the advent of this adaptive, locally-refineable, high-fidelity technology, isogeometric methods can become more feasible for use in fluid analyses.
|
46 |
Advanced Numerical Modelling of Discontinuities in Coupled Boundary Value Problems / Numerische Modellierung von Diskontinuitäten in Gekoppelten RandwertproblemenKästner, Markus 18 August 2016 (has links) (PDF)
Industrial development processes as well as research in physics, materials and engineering science rely on computer modelling and simulation techniques today. With increasing computer power, computations are carried out on multiple scales and involve the analysis of coupled problems. In this work, continuum modelling is therefore applied at different scales in order to facilitate a prediction of the effective material or structural behaviour based on the local morphology and the properties of the individual constituents. This provides valueable insight into the structure-property relations which are of interest for any design process.
In order to obtain reasonable predictions for the effective behaviour, numerical models which capture the essential fine scale features are required. In this context, the efficient representation of discontinuities as they arise at, e.g. material interfaces or cracks, becomes more important than in purely phenomenological macroscopic approaches. In this work, two different approaches to the modelling of discontinuities are discussed: (i) a sharp interface representation which requires the localisation of interfaces by the mesh topology. Since many interesting macroscopic phenomena are related to the temporal evolution of certain microscopic features, (ii) diffuse interface models which regularise the interface in terms of an additional field variable and therefore avoid topological mesh updates are considered as an alternative.
With the two combinations (i) Extended Finite Elemente Method (XFEM) + sharp interface model, and (ii) Isogeometric Analysis (IGA) + diffuse interface model, two fundamentally different approaches to the modelling of discontinuities are investigated in this work. XFEM reduces the continuity of the approximation by introducing suitable enrichment functions according to the discontinuity to be modelled. Instead, diffuse models regularise the interface which in many cases requires even an increased continuity that is provided by the spline-based approximation. To further increase the efficiency of isogeometric discretisations of diffuse interfaces, adaptive mesh refinement and coarsening techniques based on hierarchical splines are presented. The adaptive meshes are found to reduce the number of degrees of freedom required for a certain accuracy of the approximation significantly.
Selected discretisation techniques are applied to solve a coupled magneto-mechanical problem for particulate microstructures of Magnetorheological Elastomers (MRE). In combination with a computational homogenisation approach, these microscopic models allow for the prediction of the effective coupled magneto-mechanical response of MRE. Moreover, finite element models of generic MRE microstructures are coupled with a BEM domain that represents the surrounding free space in order to take into account finite sample geometries. The macroscopic behaviour is analysed in terms of actuation stresses, magnetostrictive deformations, and magnetorheological effects. The results obtained for different microstructures and various loadings have been found to be in qualitative agreement with experiments on MRE as well as analytical results. / Industrielle Entwicklungsprozesse und die Forschung in Physik, Material- und Ingenieurwissenschaft greifen in einem immer stärkeren Umfang auf rechnergestützte Modellierungs- und Simulationsverfahren zurück. Die ständig steigende Rechenleistung ermöglicht dabei auch die Analyse mehrskaliger und gekoppelter Probleme. In dieser Arbeit kommt daher ein kontinuumsmechanischer Modellierungsansatz auf verschiedenen Skalen zum Einsatz. Das Ziel der Berechnungen ist dabei die Vorhersage des effektiven Material- bzw. Strukturverhaltens auf der Grundlage der lokalen Werkstoffstruktur und der Eigenschafen der konstitutiven Bestandteile. Derartige Simulationen liefern interessante Aussagen zu den Struktur-Eigenschaftsbeziehungen, deren Verständnis entscheidend für das Material- und Strukturdesign ist.
Um aussagekräftige Vorhersagen des effektiven Verhaltens zu erhalten, sind numerische Modelle erforderlich, die wesentliche Eigenschaften der lokalen Materialstruktur abbilden. Dabei kommt der effizienten Modellierung von Diskontinuitäten, beispielsweise Materialgrenzen oder Rissen, eine deutlich größere Bedeutung zu als bei einer makroskopischen Betrachtung. In der vorliegenden Arbeit werden zwei unterschiedliche Modellierungsansätze für Unstetigkeiten diskutiert: (i) eine scharfe Abbildung, die üblicherweise konforme Berechnungsnetze erfordert. Da eine Evolution der Mikrostruktur bei einer derartigen Modellierung eine Topologieänderung bzw. eine aufwendige Neuvernetzung nach sich zieht, werden alternativ (ii) diffuse Modelle, die eine zusätzliche Feldvariable zur Regularisierung der Grenzfläche verwenden, betrachtet.
Mit der Kombination von (i) Erweiterter Finite-Elemente-Methode (XFEM) + scharfem Grenzflächenmodell sowie (ii) Isogeometrischer Analyse (IGA) + diffuser Grenzflächenmodellierung werden in der vorliegenden Arbeit zwei fundamental verschiedene Zugänge zur Modellierung von Unstetigkeiten betrachtet. Bei der Diskretisierung mit XFEM wird die Kontinuität der Approximation durch eine Anreicherung der Ansatzfunktionen gemäß der abzubildenden Unstetigkeit reduziert. Demgegenüber erfolgt bei einer diffusen Grenzflächenmodellierung eine Regularisierung. Die dazu erforderliche zusätzliche Feldvariable führt oft zu Feldgleichungen mit partiellen Ableitungen höherer Ordnung und weist in ihrem Verlauf starke Gradienten auf. Die daraus resultierenden Anforderungen an den Ansatz werden durch eine Spline-basierte Approximation erfüllt. Um die Effizienz dieser isogeometrischen Diskretisierung weiter zu erhöhen, werden auf der Grundlage hierarchischer Splines adaptive Verfeinerungs- und Vergröberungstechniken entwickelt.
Ausgewählte Diskretisierungsverfahren werden zur mehrskaligen Modellierung des gekoppelten magnetomechanischen Verhaltens von Magnetorheologischen Elastomeren (MRE) angewendet. In Kombination mit numerischen Homogenisierungsverfahren, ermöglichen die Mikrostrukturmodelle eine Vorhersage des effektiven magnetomechanischen Verhaltens von MRE. Außerderm wurden Verfahren zur Kopplung von FE-Modellen der MRE-Mikrostruktur mit einem Randelement-Modell der Umgebung vorgestellt. Mit Hilfe der entwickelten Verfahren kann das Verhalten von MRE in Form von Aktuatorspannungen, magnetostriktiven Deformationen und magnetischen Steifigkeitsänderungen vorhergesagt werden. Im Gegensatz zu zahlreichen anderen Modellierungsansätzen, stimmen die mit den hier vorgestellten Methoden für unterschiedliche Mikrostrukturen erzielten Vorhersagen sowohl mit analytischen als auch experimentellen Ergebnissen überein.
|
47 |
Análise isogeométrica aplicada a problemas de interação fluido-estrtura e superfície livreTonin, Mateus Guimarães January 2017 (has links)
O presente trabalho tem por objetivo desenvolver uma formulação numérica baseada em Análise Isogeométrica para o estudo de problemas de interação fluido-estrutura (IFE) em aplicações envolvendo corpos rígidos submersos, onde escoamentos incompressíveis de fluidos Newtonianos com superfície livre são considerados. Propõe-se o emprego da Análise Isogeométrica por permitir a unificação entre os procedimentos de pré-processamento e análise, melhorando assim as condições de continuidade das funções de base empregadas tanto na discretização espacial do problema como na aproximação das variáveis do sistema de equações. O sistema de equações fundamentais do escoamento é formado pelas equações de Navier-Stokes e pela equação da conservação de massa, descrita segundo a hipótese de pseudo-compressibilidade, em uma formulação cinemática ALE (Arbitrary Lagrangean- Eulerian). A consideração da superfície livre no escoamento se dá tratando o fluido como um meio bifásico, através do método Level Set. O corpo rígido apresenta não linearidade na rotação e restrições representadas por vínculos elásticos e amortecedores viscosos, sendo a equação de equilíbrio dinâmico resolvida através do método de Newmark. O esquema de acoplamento sólido-fluido adotado é o particionado convencional, que impõe condições de compatibilidade cinemáticas e de equilíbrio sobre a interface sólido-fluido, analisando ambos os meios de maneira sequencial. A discretização das equações governantes é realizada através do esquema explícito de dois passos de Taylor-Galerkin, aplicado no contexto da Análise Isogeométrica. Por fim, são analisados alguns problemas da Dinâmica de Fluidos Computacional, de onde se concluiu que os resultados obtidos são bastante consistentes com os fenômenos envolvidos, com as ferramentas exclusivas da Análise Isogeométrica, como o refinamento k, melhorando a convergência dos resultados. Para escoamentos bifásicos, verificou-se que o método Level Set obteve resultados bastante promissores apresentando, entretanto, uma dissipação numérica excessiva. Propõe-se, para estudos futuros, a elaboração de esquemas numéricos que conservem melhor o volume da fase líquida do escoamento. / The present work aims to development of a numerical formulation based on Isogeometric Analysis for the study of Fluid-Structure Interaction problems in applications involving rigid bodies submerged, considering incompressible Newtonian flows with free surface. The use of the Isogeometric Analysis allows unification between the preprocessing and analysis steps, improving then the continuity of the base functions employed, both in the spatial discretization and approximation of the variables in the system of equations. The fundamental flow equations are formed by the Navier-Stokes and the mass conservation, described by de pseudo-compressibility hypothesis, in an ALE (Arbitrary Lagrangean-Eulerian) kinematic formulation. The free surface consideration of the flow is handled treating the fluid like a two- phase medium, using the Level Set method. The rigid body considers nonlinearity in rotation, and restrictions represented by elastic springs and viscous dampers, with the dynamic equilibrium equation being resolved using the Newmark’s method. The solid-fluid coupling scheme is the conventional partitioned, which imposes kinematics and equilibrium compatibility conditions on the solid-fluid interface, analyzing both mediums in a sequential manner. The governing equations are discretized using the explicit two step Taylor-Galerkin method, applied in an Isogeometric Analisys context. Finally, some Computational Fluid Dinamics problems are analysed, from which it was concluded that the results obtained are quite consistent with phenomena involved, with the unique tools of Isogeometric Analysis, such as k-refinement, improving the convergence of the results. For biphasic flows, it was verified that the Level Set method obtained very promising results, presenting, however, an excessive numerical dissipation. For future studies, it is proposed the elaboration of numerical schemes that better preserve the volume of the liquid phase of the flow.
|
48 |
Contribuições às análises de fratura e fadiga de componentes tridimensionais pelo Método dos Elementos de Contorno Dual / Contributions to fracture and fatigue analysis of tridimensional components by the Dual Boundary Element MethodCordeiro, Sérgio Gustavo Ferreira 05 February 2018 (has links)
O presente trabalho consiste no desenvolvimento de uma ferramenta computacional para análises de fratura e fadiga de componentes tridimensionais a partir de modelos geométricos de Desenho Assistido por Computador (CAD, acrônimo do inglês). Modelos de propagação de fissuras associados a leis empíricas de fadiga permitem a determinação da vida útil de peças mecânico-estruturais. Tais análises são de vital importância para garantir a segurança estrutural em diversos projetos de engenharia tais como os de pontes, plataformas off-shore e aeronaves. No entanto, a criação de modelos de análise a partir de modelos geométricos de CAD envolve diversas etapas intermediárias que visam a obtenção de malhas volumétricas adequadas. A grande maioria dos modelos de CAD trabalha com a representação de sólidos a partir de seu contorno utilizando superfícies paramétricas, dentre as quais se destacam as superfícies B-Splines Racionais Não Uniformes (NURBS, acrônimo do inglês). Para gerar malhas volumétricas é necessário que o conjunto de superfícies NURBS que descrevem o objeto seja \"estanque\", ou seja, sem lacunas e/ou superposições nas conexões das superfícies, o que não é possível garantir na grande maioria dos modelos constituídos por NURBS. As contribuições propostas no presente trabalho são aplicáveis a modelos baseados no Método dos Elementos de Contorno dual (MEC dual), os quais exigem apenas a discretização das superfícies do problema, ou seja, contorno mais fissuras. No intuito de criar os modelos de análise de maneira eficiente a partir dos modelos geométricos de CAD, desenvolveu-se uma estratégia de colocação que permite discretizar de maneira independente cada uma das superfícies NURBS que compõem os modelos geométricos sólidos. Com a estratégia proposta evitam-se as dificuldades no tratamento das conexões entre as superfícies sendo possível analisar modelos geométricos \"não estanques\". A implementação abrange superfícies NURBS, aparadas ou não, de ordens polinomiais quaisquer e elementos de contorno triangulares e quadrilaterais de aproximação linear. As equações integrais de deslocamentos e de forças de superfície são regularizadas e as integrais singulares e hipersingulares são tratadas pelo Método de Guiggiani. Fissuras de borda são inseridas nos modelos de análise a partir de um algoritmo de remalhamento simples baseado em tolerâncias dimensionais. O mesmo algoritmo é utilizado para as análises incrementais de propagação. Três técnicas de extração dos Fatores de Intensidade de Tensão (FIT) foram implementadas para os modelos baseados na Mecânica da Fratura Elástica Linear (MFEL), a saber, as técnicas de correlação, de extrapolação e de ajuste de deslocamentos. A extensão dessa última técnica para problemas tridimensionais é outra contribuição do presente trabalho. Os critérios da máxima taxa de liberação de energia e de Schöllmann foram utilizados para determinar o FIT equivalente e o caminho de propagação das fissuras. O ângulo de deflexão é determinado por um algoritmo de otimização e o ângulo de torção, definido para o critério de Schöllmann, é imposto no vetor de propagação a partir de uma formulação variacional unidimensional, definida sobre a linha de frente da fissura. Nos modelos de fadiga adota-se a MFEL e a equação de Paris-Erdogan para determinar a vida útil à propagação de defeitos preexistentes. Um procedimento iterativo foi desenvolvido para evitar a interpenetração da matéria após o contato das faces da fissura, permitindo análises de fadiga com carregamentos alternados. Como proposta para a continuidade da pesquisa propõe-se desenvolver formulações isogeométricas de elementos de contorno para analisar problemas de fratura e fadiga diretamente dos modelos geométricos de CAD, sem a necessidade de gerar as malhas de superfície. Um estudo numérico preliminar envolvendo uma versão isogeométrica do MEC dual baseada em NURBS e a versão convencional utilizando polinômios de Lagrange lineares e quadráticos foi realizado. A partir do estudo foi possível apontar as vantagens e desvantagens de cada formulação e sugerir melhorias para ambas. / The present work consists in the development of a computational tool for fracture and fatigue analysis of three-dimensional components obtained from geometrical models of Computer-Aided Design (CAD). Crack propagation models associated with empirical fatigue laws allow the determination of residual life for structural-mechanical pieces. These analyses are vital to ensure the structural safety in several engineering projects such as in bridges, offshore platforms and aircraft. However, the creation of the analysis models from geometrical CAD models requires several intermediary steps in order to obtain suitable volumetric meshes of the problems. The majority of CAD models represent solids with parametric surfaces to describe its boundaries, which is known as the Boundary representation (B-representation). The most common parametric surfaces are Non-Uniform Rational B-Splines (NURBS). To generate a volumetric mesh it is required that the set of surfaces that describe the object must be watertight, i.e., without gaps or superposition at the surfaces connections, which is not possible to unsure using NURBS. The contributions proposed at the present thesis are applicable to models based on the Dual Boundary Element Method (DBEM), which require only the discretization of the surfaces of the problems, i.e., boundary and cracks. A special collocation strategy was developed in order to create the analysis models efficiently from the geometrical CAD models. The collocation strategy allows discretizing independently each one of the NURBS surfaces that compose the geometrical solid models. Therefore, the difficulties in the treatment of the surface connections are avoided and it becomes possible to create analysis models from non-watertight geometrical models. The implementation covers trimmed and non-trimmed NURBS surfaces of any polynomial orders and also triangular and quadrilateral boundary elements of linear order. The displacement and traction boundary integral equations are regularized and the strong and hypersingular integrals are treated with the Guiggiani\'s method. Edge cracks are inserted in the models by a simple remeshing procedure based on dimensional tolerances. The same remeshing approach is adopted for the incremental crack propagation analysis. Three techniques were adopted to extract the Stress Intensity Factors (SIF) in the context of Linear Elastic Fracture Mechanics (LEFM), i.e., the displacement correlation, extrapolation and fitting techniques. The extension of this last technique to three-dimensional problems is another contribution of the present work. Both the general maximum energy realise rate and the Schöllmann\'s criteria were adopted to determine the equivalent SIF and the crack propagation path. The deflection angle is obtained by an optimization algorithm and the torsion angle, defined for the Schöllmann\'s criterion, is imposed in the propagation vector through a one-dimensional variational formulation defined over the crack front line. The concepts of LEFM are adopted together with the Paris-Erdogan equation in order to determine the fatigue life of pre-existing defects. An iterative procedure was developed to avoid the self-intersection of the crack surfaces allowing fatigue analysis with alternate loadings. Finally, as suggestion for future researches, it was started the study of isogeometric boundary element formulations in order to perform fracture and fatigue analysis directly from CAD geometries, without surface mesh generation. A preliminary numerical study involving an isogeometric version of the DBEM using NURBS and the conventional DBEM using linear and quadratic Lagrange elements was presented. From the study it was possible to point out the advantages and disadvantages of each approach and suggest improvements for both.
|
49 |
Generování a optimalizace meshů / Generování a optimalizace meshůMokriš, Dominik January 2012 (has links)
This thesis is devoted to the problem of finding a suitable geometrical de- scription of the domain for the Finite Element Method (FEM). We present the most important methods used in generation and improvement of unstructured triangular meshes (grids) for two dimensional FEM. Possible measures of mesh quality are discussed with respect to their usage in linear Lagrange FEM. The relationship between mesh geometry (especially angles of particular triangles), discretization error and stiffness matrix condition number is examined. Two methods of mesh improvement, based on Centroidal Voronoi Tessellations (CVT) and Optimal Delaunay Triangulations (ODT), are discussed in detail and some results on convergence of CVT based methods are reviewed. Some aspects of these methods, e.g. the relation between density of boundary points and interior mesh vertices and the treatment of the boundary triangles is reconsidered in a new way. We have implemented these two methods and we discuss possible im- provements and new algorithms. A geometrically very interesting idea of recent alternative to FEM, Isogeometric Analysis (IGA), is outlined and demonstrated on a simple example. Several numerical tests are made in order to the compare the accuracy of solutions of isotropic PDEs obtained by FEM on bad mesh, mesh improved...
|
50 |
Thermodynamically consistent modeling and simulation of multiphase flowsLiu, Ju 09 February 2015 (has links)
Multiphase flow is a familiar phenomenon from daily life and occupies an important role in physics, engineering, and medicine. The understanding of multiphase flows relies largely on the theory of interfaces, which is not well understood in many cases. To date, the Navier-Stokes-Korteweg equations and the Cahn-Hilliard equation have represented two major branches of phase-field modeling. The Navier-Stokes-Korteweg equations describe a single component fluid material with multiple states of matter, e.g., water and water vapor; the Cahn-Hilliard type models describe multi-component materials with immiscible interfaces, e.g., air and water. In this dissertation, a unified multiphase fluid modeling framework is developed based on rigorous mathematical and thermodynamic principles. This framework does not assume any ad hoc modeling procedures and is capable of formulating meaningful new models with an arbitrary number of different types of interfaces. In addition to the modeling, novel numerical technologies are developed in this dissertation focusing on the Navier-Stokes-Korteweg equations. First, the notion of entropy variables is properly generalized to the functional setting, which results in an entropy-dissipative semi-discrete formulation. Second, a family of quadrature rules is developed and applied to generate fully discrete schemes. The resulting schemes are featured with two main properties: they are provably dissipative in entropy and second-order accurate in time. In the presence of complex geometries and high-order differential terms, isogeometric analysis is invoked to provide accurate representations of computational geometries and robust numerical tools. A novel periodic transformation operator technology is also developed within the isogeometric context. It significantly simplifies the procedure of the strong imposition of periodic boundary conditions. These attributes make the proposed technologies an ideal candidate for credible numerical simulation of multiphase flows. A general-purpose parallel computing software, named PERIGEE, is developed in this work to provide an implementation framework for the above numerical methods. A comprehensive set of numerical examples has been studied to corroborate the aforementioned theories. Additionally, a variety of application examples have been investigated, culminating with the boiling simulation. Importantly, the boiling model overcomes several challenges for traditional boiling models, owing to its thermodynamically consistent nature. The numerical results indicate the promising potential of the proposed methodology for a wide range of multiphase flow problems. / text
|
Page generated in 0.0675 seconds