• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 56
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Two new, single-isomer, sulfated β-cyclodextrins for use as chiral resolving agents for enantiomer separations in capillary electrophoresis

Busby, Michael Brent 16 August 2006 (has links)
Two novel, single-isomer, sulfated cyclodextrins, the sodium salts of heptakis(2- O-methyl-3-O-acetyl-6-O-sulfo)cyclomaltoheptaose (HMAS) and heptakis(2-O-methyl- 6-O-sulfo)cyclomaltoheptaose (HMS) were used as chiral resolving agents in both aqueous and non-aqueous electrophoretic separation of a set of pharmaceutically active weak base enantiomers. Enantiomers of twenty one of the twenty four weak bases were baseline resolved in one or more of the background electrolytes (BGE’s) used. An eight-step synthetic method was used to produce, on a large scale, the title compounds in greater than 97% purity. The purity of the synthetic intermediates and the final products were characterized by HPLC-ELSD and indirect UV-detection capillary electrophoresis (CE), respectively. X-ray crystallography, MALDI-TOF mass spectrometry and 1H as well as 13C NMR spectroscopy allowed for unambiguous characterization of the structure of each intermediate and the final product.
42

Development of next generation mixed matrix hollow fiber membranes for butane isomer separation

Liu, Junqiang 13 October 2010 (has links)
Mixed matrix hollow fiber membranes maintain the ease of processing polymers while enhancing the separation performance of the pure polymer due to inclusion of molecular sieve filler particles. This work shows the development process of high loading mixed matrix hollow fiber membranes for butane isomer separation, from material selection and engineering of polymer-sieve interfacial adhesion to mixed matrix hollow fiber spinning. The matching of gas transport properties in polymer and zeolite is critical for forming successful mixed matrix membranes. The nC4 permeability in glassy commercial polymers such as Ultem® and Matrimid® is too low (< 0.1 Barrer) for commercial application. A group of fluorinated (6FDA) polyimides, with high nC4 permeability and nC4/iC4 selectivity, are selected as the polymer matrix. No glassy polymers can possibly match the high permeable MFI to make mixed matrix membranes with selectivity enhancement for C4s separation. Zeolite 5A, which has a nC4 permeability (~3 Barrer) and nC4/iC4 selectivity (essentially ∞), matches well with the 6FDA polymers. A 24% nC4/iC4 selectivity enhancement was achieved in mixed matrix membranes containing 6FDA-DAM and 25 wt% treated 5A particles. A more promising mixed matrix membrane contains 6FDA-DAM-DABA matrix and 5A, because of a better match of gas transport properties in polymer and zeolite. Dual layer hollow fibers, with cellulose acetate core layer and sheath layers of 6FDA polyimides, were successfully fabricated. Successive engineering of the 6FDA sheath layer and the dense skin is needed for the challenging C4s separation, which is extremely sensitive to the integrity of the dense skin layer. The delamination-free, macrovoid-free dual layer hollow fiber membranes provide the solution for the expensive 6FDA polyimides spinning. Mixed matrix hollow fiber membranes are spun base on the platform of 6FDA/Cellulose acetate dual layer hollow fibers. Preliminary results suggest that high loading mixed matrix hollow fiber membranes for C4s is feasible. Following research is needed on the fiber spinning with well treated zeolite 5A nanoparticles. The key aspect of this research is elucidating the three-step (sol-gel-precipitation) mechanism of sol-gel-Grignard treatment, based on which further controlling of Mg(OH)2 whisker morphologies is possible. A Mg(OH)2 nucleation process promoted by acid species is proposed to explain the heterogeneous Mg(OH)2 growing process. Different acid species were tried: 1) HCl solution, 2) AlClx species generated by dealumination process and 3) AlCl3 supported on zeolite surfaces. Acids introduced through HCl solution and dealumination are effective on commercial 5A particles to generate Mg(OH)2 whiskers in the sol-gel-Grignard treatment. Supported AlCl3 is effective on both commercial and synthesized 5A particles (150 nm-1 µm) during the sol-gel-Grignard treatment, in terms of promoting heterogeneous Mg(OH)2 whiskers formation. But the byproduct of Al(OH)3 layer separates the Mg(OH)2 whiskers from zeolite surface, and leads to undesirable morphologies for polymer-zeolite interfacial adhesion. The elucidation of sol-gel-Grignard mechanism and importance of zeolite surface acidity on Mg(OH)2 formation, builds a solid foundation for future development towards ''universal'' method of growing Mg(OH)2 whiskers on zeolite surfaces.
43

The Effects of Perfluoroalkyl Compounds on In Ovo Toxicity and Hepatic mRNA Expression in the Domestic Chicken (Gallus gallus domesticus)

O'Brien, Jason 03 May 2011 (has links)
Perfluoroalkyl compounds (PFCs) are a group of chemical surfactants most notably used in non-stick and stain-resistance applications. Due to their wide-spread use and inherent resistance to degradation, several PFCs have become persistent environmental contaminants. Despite the high concentrations of PFCs reported in wild birds and their eggs, very little is known about the toxicological effects they have on avian species. This thesis investigates the developmental toxicity of PFCs in an avian model species: the domestic chicken (Gallus gallus domesticus). Egg injection experiments were performed to assess the in ovo toxicity of perfluorooctane sulfonate (technical grade, T-PFOS), perfluorooctanoic acid (PFOA), perfluorodecane sulfonate (PFDS) and perfluoroundecanoic acid (PFUdA). Real-time RT-PCR was then used to measure the transcription of candidate biomarker genes in the liver tissue of day 20 embryos. Candidate genes were selected based on their responsiveness to PFC exposure in previously conducted in vitro screening assays. In ovo exposure to PFOS resulted in a dose-dependent decrease in embryo pipping success (a measure of hatching success) with an LD50 of 93 μg/g (3.54 μg/g-672,910 μg/g, 95% confidence interval), however the expression of peroxisome proliferator-activated receptor alpha (PPARα)-regulated genes was not affected in liver tissue as hypothesized. PFOA, PFDS and PFUdA had no effect on the pipping success of chicken embryos. The expression of cytochrome P450 1A4 (CYP1A4) and liver fatty acid binding protein (L-FABP) mRNA increased in embryo liver tissue following in ovo exposure to PFUdA but was only statistically significant at 10 μg/g, which is several orders of magnitude higher than concentrations reported in wild bird eggs. The isomer-specific accumulation of PFOS in chicken embryo livers was also investigated using an in-port derivatization gas-chromatography/mass spectrometry (GC-MS) method. Prior to incubation, chicken eggs were injected with T-PFOS, composed of 63% linear isomer (L-PFOS) and 37.3% branched isomers. The isomer profiles in day-20 embryo liver tissue showed up to 20% enrichment in the proportion of L-PFOS, compared to T-PFOS, with a corresponding decrease in the proportion of branched isomers. This enrichment was inversely proportional to dose. Finally, the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either T-PFOS or L-PFOS were compared using Agilent 4x44k Chicken (V2) Gene Expression microarrays. At equal concentrations (10 μM), T-PFOS altered the expression of significantly more genes (340 genes, >1.5 fold change, false discovery rate adjusted p<0.05) compared to L-PFOS (130 genes). Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, cellular growth and proliferation, and cell-cell signaling. Pathway and interactome analysis suggested that gene expression may be affected through RXR, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling and PPARγ and SREBP receptors. In all functional categories and pathways examined, T-PFOS had a more pronounced disruptive effect on transctional regulation than L-PFOS. In summary, egg injection experiments showed that T-PFOS (but not linear PFOA, PFDS or PFUdA) may affect the hatching success of the chicken at environmentally relevant concentrations. It was also demonstrated that the accumulation of PFOS in embryonic liver is isomer specific, and leads to an enrichment of L-PFOS. The increased transcriptional disruption caused by T-PFOS in cultured hepatocytes over L-PFOS suggests that the branched isomers may be largely responsible for the toxicological effects of PFOS. Combined, the results from this thesis demonstrate the importance of considering PFOS isomer burdens during risk assessment. In addition, gene expression analysis identified several candidate mechanisms for PFOS toxicity.
44

Estudo de propriedades locais em impureza intersticiais em hospedeiros metálicos. / Study of Local Properties in Interstitial Impurities in Metalic Hosts.

Luiz Adolfo de Mello 02 August 1996 (has links)
Neste trabalho realizamos um estudo do comportamento do momento magnético e do deslocamento isomérico de uma impureza intersticial de Fe em hospedeiros metálicos de valências 4 (Ti, Zr), 3 (Sc, Y). Investigamos também impurezas intersticiais e substitucionais de Mo e Fe em hospedeiros divalentes. Para realizar este estudo fizemos cálculos de estrutura eletrônica utilizando o RS-LMTO-ASA (\"Real Space - Linear Muffin-Tin Orbital - Atomic Spherical Approximation\"), um método de primeiros princípios dentro da aproximação do funcional densidade local, implementado no espaço real. Calculamos o momento magnético no sítio da impureza nos sistemas acima e constatamos que a impureza intersticial de Fe é não magnética nos hospedeiros de valências 4 e 3, e que tanto as impurezas intersticiais como as substitucionais podem apresentar momento magnético nos hospedeiros divalentes. Mostramos que para os sistemas divalentes o momento magnético depende fortemente da relaxação. Os nossos resultados são explicados através de um modelo simples, baseado no modelo de Wolff. Investigamos também o comportamento do deslocamento isomérico no sítio da impureza de Fe nesses vários sistemas. Constatamos que os nossos resultados concordam razoavelmente bem com os dados experimentais e explicam o comportamento das tendências observadas. / In the present work, we have studied the magnetic moments and the behavior of the isomer shift at the interstitial Fe impurity site in Ti, Sc, Zr and Y hosts. We have also investigated interstitial and substitutional Fe and Mo impurities in Ca, Sr and Yb hosts. To perform the calculations, we have used the RS-LMTO-ASA scheme, a first principles method, within the local spin density approximation, implemented in real space. We calculated the magnetic moments at the impurity site in the above systems and all the substitucional impurities are found to be magnetic. The results show that interstitial Fe is non-magnetic in the tri- and tetravalent hosts, but interstitial Fe and Mo impurities could develop local magnetic moment in divalent hosts. \'We show that the magnetic moment at the impurity site in these divalent hosts is strongly dependent on lattice relaxation. The results can be explained using simple arguments based on Wolff model. We have investigated in a systematic way the behavior of the isomer shift of Fe impurities in these systems. We observed that our results are in generally good agreement with experiment and lead to better understanding of the observed trends in terms of the volume occupied by the Fe in each host.
45

The Effects of Perfluoroalkyl Compounds on In Ovo Toxicity and Hepatic mRNA Expression in the Domestic Chicken (Gallus gallus domesticus)

O'Brien, Jason January 2011 (has links)
Perfluoroalkyl compounds (PFCs) are a group of chemical surfactants most notably used in non-stick and stain-resistance applications. Due to their wide-spread use and inherent resistance to degradation, several PFCs have become persistent environmental contaminants. Despite the high concentrations of PFCs reported in wild birds and their eggs, very little is known about the toxicological effects they have on avian species. This thesis investigates the developmental toxicity of PFCs in an avian model species: the domestic chicken (Gallus gallus domesticus). Egg injection experiments were performed to assess the in ovo toxicity of perfluorooctane sulfonate (technical grade, T-PFOS), perfluorooctanoic acid (PFOA), perfluorodecane sulfonate (PFDS) and perfluoroundecanoic acid (PFUdA). Real-time RT-PCR was then used to measure the transcription of candidate biomarker genes in the liver tissue of day 20 embryos. Candidate genes were selected based on their responsiveness to PFC exposure in previously conducted in vitro screening assays. In ovo exposure to PFOS resulted in a dose-dependent decrease in embryo pipping success (a measure of hatching success) with an LD50 of 93 μg/g (3.54 μg/g-672,910 μg/g, 95% confidence interval), however the expression of peroxisome proliferator-activated receptor alpha (PPARα)-regulated genes was not affected in liver tissue as hypothesized. PFOA, PFDS and PFUdA had no effect on the pipping success of chicken embryos. The expression of cytochrome P450 1A4 (CYP1A4) and liver fatty acid binding protein (L-FABP) mRNA increased in embryo liver tissue following in ovo exposure to PFUdA but was only statistically significant at 10 μg/g, which is several orders of magnitude higher than concentrations reported in wild bird eggs. The isomer-specific accumulation of PFOS in chicken embryo livers was also investigated using an in-port derivatization gas-chromatography/mass spectrometry (GC-MS) method. Prior to incubation, chicken eggs were injected with T-PFOS, composed of 63% linear isomer (L-PFOS) and 37.3% branched isomers. The isomer profiles in day-20 embryo liver tissue showed up to 20% enrichment in the proportion of L-PFOS, compared to T-PFOS, with a corresponding decrease in the proportion of branched isomers. This enrichment was inversely proportional to dose. Finally, the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either T-PFOS or L-PFOS were compared using Agilent 4x44k Chicken (V2) Gene Expression microarrays. At equal concentrations (10 μM), T-PFOS altered the expression of significantly more genes (340 genes, >1.5 fold change, false discovery rate adjusted p<0.05) compared to L-PFOS (130 genes). Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, cellular growth and proliferation, and cell-cell signaling. Pathway and interactome analysis suggested that gene expression may be affected through RXR, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling and PPARγ and SREBP receptors. In all functional categories and pathways examined, T-PFOS had a more pronounced disruptive effect on transctional regulation than L-PFOS. In summary, egg injection experiments showed that T-PFOS (but not linear PFOA, PFDS or PFUdA) may affect the hatching success of the chicken at environmentally relevant concentrations. It was also demonstrated that the accumulation of PFOS in embryonic liver is isomer specific, and leads to an enrichment of L-PFOS. The increased transcriptional disruption caused by T-PFOS in cultured hepatocytes over L-PFOS suggests that the branched isomers may be largely responsible for the toxicological effects of PFOS. Combined, the results from this thesis demonstrate the importance of considering PFOS isomer burdens during risk assessment. In addition, gene expression analysis identified several candidate mechanisms for PFOS toxicity.
46

Theoretical investigation of excited states of C3 and pathways for the reaction C3+C3 = C6

Terentyev, Alexander Victorovich 01 June 2005 (has links)
For the astrophysically relevant molecules, C3 and C6, ab initio calculations are performed to study the geometries of different neutral isomers, the electronic structures of C3 in its ground and excited states, and possible pathways for the reaction C3 + C3 = C6. For C3 we present calculations for the potential energy surfaces of C3 in different electronic configurations, including the singlet ground state, the triplet ground state, and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional-Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e. the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C3. For the higher excited states up to about 12 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give new insight into the potential energy landscape for higher excitation energies. For C6 we consider the known linear states and the lowest state of monocyclic ring. The potential energy surfaces, were built for various pathways for the reaction C3 + C3 = C6. For this investigation we apply a mixed density functional-Hartree-Fock method which gives good results with respect to the experimental values and does not demand much computational time. We have considered collinear and symmetric non-linear as well as some non-symmetric collision schemes of two C3 subunits, producing the 1Ag states of a D2h isomer, one in a cyclic shape, the other in the form of two triangles connected by the corners, and for the non-symmetric scheme the 1A' state of a Cs isomer. To investigate the pathways for the creation of C6 from two C3 we emphasize the importance of the electron configuration for the reacting C3 subunits. As a result we have obtained the following rule: The stable linear as well as the cyclic C6 molecule can only be created in the case when at least one C3 has a partially filled orbital, requiring an excited state with respect to the singlet ground state of C3. / Für die astrophysikalisch bedeutenden Moleküle C3 und C6 werden ab initio Berechnungen von elektronischen Zuständen verschiedener Isomere durchgeführt. Basierend auf der Optimierung verschiedener neutraler Isomere von C3 im Grundzustand und mehreren angeregten Zuständen werden mögliche Wege für die Reaktion C3 + C3 = C6 studiert. Für C3 werden ab initio Berechnungen für die Flächen der potentiellen Energie in verschiedenen elektronischen Konfigurationen durchgeführt, einschließlich des Singulett-Grundzustands, des Triplett-Grundzustands, und einiger höherer Anregungszustände. Die untersuchten Geometrien schließen gleichschenklige Dreiecke mit zwei identischen Bindungslängen ein, wobei der Bindungswinkel dazwischen variiert wird. Die Gesamtenergien, die sich in einem gemischten Hartree-Fock-Dichtefunktional-Verfahren und unter Verwendung der quadratischen Konfigurationswechselwirkung ergeben, reproduzieren die experimentell beobachtete Energiedifferenz von 2.1 eV zwischen dem niedrigsten Triplett-Zustand und dem Singulett-Grundzustand. In der Geometrie des gleichseitigen Dreiecks ergibt sich ein niedrigerliegender Triplett-Zustand mit einer Energie von nur 0.8 eV über der Energie des Singuletts im linearen Isomer, so dass die dreieckige Geometrie den niedrigsten Anregungszustand von C3 ergibt. Für höhere Anregungsenergien bis zu 12 eV über dem Grundzustand wird zeitabhängige Dichtefunktional-Theorie zur Ermittlung der Energie angeregter elektronischer Konfigurationen eingesetzt. Obwohl der von dieser Methode produzierte systematische Fehler von der Größenordnung von 0.4 eV ist, ergeben sich interessante neue Einblicke in die Potentiallandschaft angeregter Zustände. Für C6 betrachten wir das bekannte lineare Isomer und das zyklische Isomer. Der Verlauf der Potentialoberflächen wird für verschiedene Reaktionspfade C3+C3 = C6 untersucht, wobei ein gemischtes Hartree-Fock-Dichtefunktional-Verfahren einesetzt wird. Im Mittelpunkt des Interesses stehen dabei kollineare Anordnungen linearer C3 Moleküle, symmetrische Kollisionen nichtlinearer Reaktanden, sowie einige nichtsymmetrische koplanare Geometrien des Zusammenstosses zweier linearer Moleküle. Als Ergebnis der Reaktionen mit symmetrischen Anordnungen ergibt sich lineares C6 oder zyklisches C6 mit D2h Symmetrie in einem elektronischen Zustand der höchsten Symmetrie 1Ag. Das nicht-symmetrische Reaktionsschema führt zu einem planaren Isomer Cs im Zustand 1A'. Um die Wege für die Bildung von C6 aus zwei C3 zu untersuchen, ist die elektronische Konfiguration der Reaktanden von entscheidender Bedeutung. Als Ergebnis erhält man die folgende Regel: sowohl ein stabiles lineares als auch ein zyklisches C6 Molekül können nur gebildet werden, wenn zumindest eines der C3 Moleküle ein teilweise gefülltes Orbital hat, wofür eine Anregung aus dem Singulett-Grundzustand heraus erforderlich ist.
47

Photochemical, Photophysical, and Electronic Properties of Fused Ring Systems with Alternating Benzene and Thiophene Units

Wex, Brigitte 12 October 2005 (has links)
No description available.
48

Mesures de rendements isobariques et isotopiques des produits de fission lourds sur le spectomètre de masse Lohengrin

Bail, Adeline 27 May 2009 (has links)
Les rendements de fission sont des données importantes pour les applications nucléaires ainsi que pour les modèles théoriques qui cherchent à reproduire ces distributions. Les rendements des produits de fission légers pour de nombreux noyaux ont été mesurés par le passé sur le spectromètre Lohengrin. Mais la méthode expérimentale utilisée, détection par chambre à ionisation, ne permet pas la séparation des isotopes pour les produits de fission lourds. Pour valider la méthode dans cette région et compléter les bibliothèques, les rendements isobariques de l’235U(nth,f), du 239Pu(nth,f) et du 241Pu(nth,f) ont été mesurés. La mise en place d’un nouveau dispositif de détection gamma sur le spectromètre a permis de déterminer les rendements isotopiques du 239Pu(nth,f). De plus les distributions en charge ionique et en énergie cinétique des produits de fission ont été étudiées, et ont mis en évidence la présence d'isomères nanosecondes pour certains de ces noyaux. / In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupling with a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields in the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. It has been extended in this work to the heavy mass region for the reactions 235U(nth,f), 239Pu(nth,f) and 241Pu(nth,f). For these higher masses an isotopic separation is no longer possible. That is why a new method was undertaken with the reaction 239Pu(nth,f) to determine the isotopic yields by gamma spectrometry. During these experiments the ionic charge state and kinetic energy distributions have been measured. Nanosecond isomers have been discovered for some nuclei thanks to a non gaussian charge state distribution. The kinetic energy distributions present very interesting structures which have been also discussed.
49

Trapped Ion Mobility Spectrometry coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the analysis of Complex Mixtures.

Benigni, Paolo 18 September 2017 (has links)
Analytical Characterization of complex mixtures, such as crude oil, environmental samples, and biological mixtures, is challenging because of the large diversity of molecular components. Mass spectrometry based techniques are among the most powerful tools for the separation of molecules based on their molecular composition, and the coupling of ion mobility spectrometry has enabled the separation and structural elucidation using the tridimensional structure of the molecule. The present work expands the ability of analytical chemists by furthering the development of IMS-MS instrumentation by coupling Trapped Ion Mobility Spectrometry to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (TIMS-FT-ICR MS). The TIMS-FT-ICR MS platform combines the high-resolution separation of TIMS, which has mobility resolving powers up to 400, and ultra-high mass resolution of FT-ICR MS, with mass resolving power over 1,000,000. This instrumentation allows the assignment of exact chemical composition for compounds in a complex mixture, as well as measurement of the collision cross-section of the molecule. Herein, the principles of the TIMS separation and its coupling to FT-ICR MS are described, as well as how the platform can be applied to targeted analysis of molecules, and untargeted characterization of complex mixtures. Molecular standards were analyzed by TIMS-MS in order to develop a computational workflow that can be utilized to elucidate molecular structure, using the measured collision cross-section of the ion. This workflow enabled identification of structural, cis/trans isomers, and chelated molecules and provides the basis for unsupervised structural elucidation of a complex mixture, and in particular for the elucidation of hydrocarbons from fossil fuels. In summary, this work presents the coupling of TIMS-FT-ICR MS and provides examples of applications as a proof of concept of the potential of this platform for solving complex analytical challenges.
50

Beta-decay, beta-delayed neutron emission and isomer studies around <sup>78</sup>Ni

Rajabali, Mustafa Moiz 01 December 2009 (has links)
A study of nuclei with few nucleons outside the closed shell provides benchmarks for the nuclear shell model especially in this modern era of physics where exotic doubly magic nuclei can be tested. The subject of this thesis is to experimentally investigate the properties of nuclei near 78Ni and to confront them with the predictions of modern large scale shell model calculations. In this regard, an experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure excited states in 71-73Ni populated via the beta-decay of 71-73Co. Data collected from this experiment lead to partial level schemes for 71Ni and 73Ni and to improvements of existing level schemes for 70Ni and 72Ni. An objective of this experiment was to investigate the changes in excitation energy of the 5/2- state relative to the 9/2+ ground state as well as the search for the 1/2- isomeric state in odd-mass nickel isotopes approaching 78Ni. A second experiment was performed also at the NSCL where a two nucleon removal reaction from 73Cu was used to populate the low lying yrast states in 71Ni. Results from this in-beam experiment aided in constructing the level scheme of 71Ni. Systematics in shell model calculations using realistic interactions for odd mass 69-77Ni reveal a steady increase in energy spacing between the 1/2- level and 9/2+ ground state - suggesting an increased role of the g9/2 correlations, but an almost constant energy separation between the 5/2- and 1/2- excited states. Using data from the two experiments, the position of the 5/2- state in 71Ni and 73Ni and 1/2- state in 71Ni were identified. The decay of 74,76Ni into 74,76Cu was also investigated. Low lying states revealed new level schemes which are presented with an interpretation of the position of 1+ states populated via allowed GT transitions. A second project in this thesis is on the design and development of a detector system using a dual micro channel plate configuration. The system was built to detect and measure nanosecond isomers in neutron rich 73-76Cu and 76Zn isotopes. The design of the instrument and preliminary beam and alpha source tests done on the system are discussed.

Page generated in 0.4751 seconds