• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiolabeling and biotinylation of internalizing monoclonal antibody chimeric BR96 potential use for extracorporeal immunoadsorption with enhanced tumor radioactivity retention of iodine, indium and rhenium /

Chen, Jianqing. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
2

Radiolabeling and biotinylation of internalizing monoclonal antibody chimeric BR96 potential use for extracorporeal immunoadsorption with enhanced tumor radioactivity retention of iodine, indium and rhenium /

Chen, Jianqing. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
3

Mass Spectrometry-Based Investigation of APP-Dependent Mechanisms in Neurodegeneration

Chaput, Dale 19 November 2015 (has links)
Alzheimer’s disease (AD) is the most prevalent form of dementia affecting the elderly, and as the aging population increases the social and economic burden of AD grows substantially. Pathological hallmarks of AD include the accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs), as well as significant neuron loss. Amyloid plaques consist of aggregated amyloid beta (Aβ) peptide, which is generated from the proteolytic processing of amyloid precursor protein (APP) in addition to several other peptides. While the processing of APP has been characterized, its primary physiological function and its involvement in AD pathology are poorly understood. Developing a greater understanding of the function of APP, and the molecular and cellular functions it is involved in or other proteins it is associated with, could provide insight into its role in AD pathology. To investigate the function of APP695, the neuronal isoform of APP, we used mass spectrometry to compare changes in protein expression and phosphorylation between APP-null B103 and APP695-expressing B103-695 rat neuroblastoma cells. Mass spectrometry-based proteomics has become a powerful technique for the unbiased identification of proteins from complex mixtures. Quantitative proteomics using labeling techniques, such as stable isotope labeling by amino acids in cell culture (SILAC), allow relative quantitation of multiple samples at once. More recently, with advances in mass spectrometer technology, label-free quantitation has become a reliable quantitative proteomics approach. Additionally, mass spectrometry can be used for the analysis of post-translational modifications, such as phosphorylation, a dynamic modification involved in the regulation of many cellular processes. Phosphoproteomics identifies site-specific phosphorylation and surrounding sequence information, which can be used for consensus motif analysis to provide further information about potential changes in kinase activity. Identifying changes in phosphorylation and kinase activity also provides information about signaling pathways and functions that may be affected by APP695 expression. Comprehensive proteomic and phosphoproteomic datasets can be used to gain insight into the molecular mechanisms that may be regulated by APP695 expression, or involved in AD progression and pathology, leading to the development of novel therapeutic and preventative strategies for AD. Proteomic and phosphoproteomic analysis of B103 and B103-695 cells identified several significant protein expression and phosphorylation changes that may be mediated by APP695-expression. Global-scale proteomic analysis identified increased expression of Ras and ƴ-synuclein in B103-695 cells, which was further validated in human AD brain tissue. Phosphoproteomic analysis showed increased phosphorylation of Histone H4 at Ser47, and led to the investigation of PCTAIRE-2 (Cdk17), and PCTAIRE-3 (Cdk18) expression, which were all shown to be increased in AD transgenic mouse tissue, culture primary rat neurons treated with Aβ, as well as mild cognitive impairment (MCI) and AD human brain tissue. Label-free quantitative proteomics was used for the analysis of human brain tissue from the cortex of individuals affected by AD, MCI, Parkinson’s disease (PD), and progressive supranuclear palsy (PSP) compared to cognitively normal, control samples. A number of differentially expressed proteins were identified in AD, MCI, PD, and PSP tissue. Bioinformatic analysis of the comprehensive proteomic datasets from AD, MCI, PD, and PSP human brain tissue identified several proteins consistent with corresponding disease pathology and neurodegeneration, such as inflammatory proteins. While some of the molecular and cellular functions were unique among neurodegenerative diseases, there also appears to be overlap of affected functions, suggesting there may be a more common mechanism of neurodegeneration.
4

Quantitative Proteomic Investigation of Disease Models of Type 2 Diabetes

Athanason, Mark Gabriel 17 November 2016 (has links)
PANcreatic DERived factor (PANDER, FAM3B) is a member of a superfamily of FAM3 proteins that are uniquely structured and strongly expressed from the endocrine pancreas and co-secreted with insulin. Unique animal models available to our lab have indicated that PANDER can induce a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased. The complexity of the biological networks involved with this process warranted the logical approach of employing quantitative mass spectrometry based proteomic analysis using stable isotope labeling of amino acids in cell culture (SILAC) to identify the global proteome differences between the PANDER transgenic (TG) overexpressing murine model to matched wild-type mice under three metabolic states (fasted, fed and insulin stimulated). Additionally, this technique was used to compare the hepatic proteome of mice on a high fat diet to elucidate early and late mechanisms of disease progression. The “spike-in” process was employed by equal addition of lysate obtained from livers of heavy L-Lysine (13C6, 97%) fed mice to the mice liver protein lysate (PANTG and WT) for relative quantitative analysis. Upon acquisition of the dataset by use of liquid chromatography tandem mass spectrometry (LC-MS/MS, LTQ Orbitrap), geometric means and Uniprot Protein identification numbers were uploaded to Ingenuity Pathway Analysis (IPA) to reveal the effect of PANDER on hepatic signaling. IPA identified lipid metabolism and fatty acid synthesis as top cellular functions differentially altered in all metabolic states. Several molecules with a role in lipid metabolism were identified and include FASN, ApoA1, ApoA4, SCD1, CD36, CYP7A1 and ACC. Furthermore, central to the differentially expressed proteins was the revealed activation of the liver X receptor (LXR) pathway. In summary, our SILAC proteomic approach has elucidated numerous previously unidentified PANDER induced molecules and pathways resulting in increased hepatic lipogenesis. In addition, we have demonstrated strong utility of this approach in comprehensively phenotyping animal models of hepatic insulin resistance. PANDER may potentially propagate pro-hepatic lipogenic effects by LXR activation in contrast to increased LXRα expression. This can be evaluated through the use of LXR agonists (T0901317) antagonists (GSK 2033). LXR activity can be measured by luciferase assays using an LXRE response plasmid. Our central hypothesis is that PANDER induces activation of LXR and is measured and predicted in our line of experiments. In general, PANDER induced LXR activation will be enhanced by T0901317 and diminish effects of GSK 2033 along with direct correlation of downstream metabolic effects such as increased hepatic lipogenesis and fatty acid metabolism. Taken together, PANDER strongly impacts hepatic lipid metabolism and may induce a SHIR phenotype via the LXR pathway. Additionally, phosphoproteomic analysis uncovered large-scale differences in protein phosphorylation states as PANDER impacts insulin signaling. A notable finding was the increased phosphorylation of glycogen synthase (GSK), possibly responsible for the decreased hepatic glycogen content in the PANTG mouse. In an effort to map out critical molecules involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis, the same proteomic approach was carried out, providing a unique dataset of differentially expressed hepatic proteins due to a high at diet.
5

Trophic structure of soil animal food webs of deciduous forests as analyzed by stable isotope labeling

Zieger, Sarah Lorain Janice 22 January 2016 (has links)
No description available.
6

Selective Pulse Chase-SILAC Labeling of Three-Dimensional Multicellular Spheroids for Global Proteome Analysis

Beller, Nicole C. 24 September 2020 (has links)
No description available.
7

Comparative cytochrome P450 proteomics in the livers of immunodeficient mice using 18O stable isotope labeling.

Patterson, Laurence H., Griffiths, W.J., Lane, C.S., Wang, Y., Betts, R. January 2007 (has links)
No
8

PART 1. SYNTHESIS OF STABLE-ISOTOPE LABELED AMINO ACIDS PART 2. SYNTHESIS OF MECHANISTIC PROBES OF RETINOID ACTION

Barnett, Derek W. 20 December 2002 (has links)
No description available.
9

Observation of ubiquitin cycle reaction using ¹⁸O stable isotope labeling / ¹⁸O安定同位体標識を用いたユビキチンサイクル反応の観測

Tanaka, Yuka 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23919号 / 工博第5006号 / 新制||工||1781(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 今堀 博, 教授 田中 庸裕, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
10

Untersuchung der intramolekularen Signaltransduktion eines Blaulichtrezeptors

Mehlhorn, Jennifer 18 May 2018 (has links)
PixD (Slr1694) ist ein Photorezeptor, der den sensors of blue light using FAD (BLUF) Proteinen zugeordnet wurde. Die Übertragung des Stimulus auf das Apoprotein erfolgt in dieser Proteinfamilie über eine Neuordnung des Wasserstoffbrückennetzwerkes um den Kofaktor, in das die strikt konservierten Reste Tyrosin-8 (Y8), Glutamin-50 (Q50) und möglicherweise das semi-konservierte Tryptophan-91 (W91) involviert sind. Ziel dieser Arbeit war es, weitere Hinweise auf die Wasserstoffbrückenkonfiguration der Flavinbindetasche in Dunkel- und Lichtzustand zu erhalten, um eine bessere Vorstellung von der Stabilisierung des Lichtzustandes zu bekommen und mögliche Wege der Signaltransduktion an die Proteinoberfläche einzugrenzen. Die Ergebnisse weisen darauf hin, dass sich lichtaktivierte Interaktionsänderungen zwischen Apoprotein und Chromophor auf die Neubildung einer Wasserstoffbrücke zum Flavin C4-Carbonyl beschränken. In Übereinstimmung zu früheren Analysen liegt das Q50 im Dunkelzustand in seiner Amid-Form vor. Sein Seitenkettencarbonyl ist im Lichtzustand vermutlich zu Y8 ausgerichtet, wobei Hinweise auf eine Amid-Imidsäure-Tautomerisierung des Glutamins in PixD gefunden wurden. Eine selektive Isotopenmarkierung des Tryptophan-91 zeigte Anzeichen für eine Verlängerung des β5-Stranges, die wahrscheinlich ein zentrales Element der Signalweiterleitung an die Proteinoberfläche darstellt. Möglicherweise erstreckt sich das Wasserstoffbrückennetzwerk dabei bis in die über dem beta5-Strang liegende alpha-Helix. Wird es gestört, scheint das Proteininnere für Imidazol zugänglich gemacht zu werden, wo es die Aktivierungsenergie für die Rückkehr in den Dunkelzustand beeinflusst. Auch Substitutionen des H73 im gegenüberliegenden Eckstrang des beta-Faltblattes beeinflussten die Geschwindigkeit der Dunkelrelaxation von PixD. Sie veränderten die IR-Absorption gegenüber dem Wildtyp jedoch nicht und unterstützen die Theorie einer Protonenleitung über das benachbarte H72. / The photoreceptor PixD (Slr1694) belongs to the sensors of blue light using FAD (BLUF) protein family. These photoreceptors propagate the signal by a rearrangement of hydrogen bonds surrounding the cofactor, involving the highly conserved residues tyrosine-8 (Y8), glutamine 50 (Q50) and perhaps the semi-conserved tryptophan-91 (W91). One aim of the presented work was to gain a deeper insight into the hydrogen bond configuration of the flavin binding pocket in the light and dark state conformations. Thereby, knowledge of the stabilization mechanisms for the light state and the signal propagation to the protein surface could be acquired. The results indicate a restriction of light induced changes in hydrogen bonding of the flavin to its C4 carbonyl. In agreement with former studies, the Q50 forms the amide isomer in the dark state. Its side chain carbonyl group most likely points towards Y8 in the active protein. Besides, the results support an amide-imidic acid-tautomerization of Q50 in PixD. A selective isotope labeling of the tryptophan-91 localized at the beginning of an edge strand of the beta sheet indicates an elongation of the secondary structure that may represent a central element of the signal propagation to the protein surface. The secondary structure is possibly connected with an alpha helix located above the beta5 strand by hydrogen bonds. A disturbance of this interaction probably allows the base catalyst imidazole to enter the protein core. Substitutions of H73 in the opposing edge beta strand changed the rate of the PixD dark relaxation as well. However, they had no visible effect on the infrared absorbance compared to the wild type and hence support a putative involvement of the neighbouring H72 in proton transfer reactions.

Page generated in 0.0639 seconds