Spelling suggestions: "subject:"itsenäisen komponenttien analyysi"" "subject:"itsenäiseen komponenttien analyysi""
1 |
Exploring functional brain networks using independent component analysis:functional brain networks connectivityAbou Elseoud, A. (Ahmed) 18 June 2013 (has links)
Abstract
Functional communication between brain regions is likely to play a key role in complex cognitive processes that require continuous integration of information across different regions of the brain. This makes the studying of functional connectivity in the human brain of high importance. It also provides new insights into the hierarchical organization of the human brain regions. Resting-state networks (RSNs) can be reliably and reproducibly detected using independent component analysis (ICA) at both individual subject and group levels. A growing number of ICA studies have reported altered functional connectivity in clinical populations. In the current work, it was hypothesized that ICA model order selection influences characteristics of RSNs as well as their functional connectivity. In addition, it was suggested that high ICA model order could be a useful tool to provide more detailed functional connectivity results. RSNs’ characteristics, i.e. spatial features, volume and repeatability of RSNs, were evaluated, and also differences in functional connectivity were investigated across different ICA model orders. ICA model order estimation had a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Notably, at low model orders neuroanatomically and functionally different units tend to aggregate into large singular RSN components, while at higher model orders these units become separate RSN components. Disease-related differences in functional connectivity also seem to alter as a function of ICA model order. The volume of between-group differences reached maximum at high model orders. These findings demonstrate that fine-grained RSNs can provide detailed, disease-specific functional connectivity alterations. Finally, in order to overcome the multiple comparisons problem encountered at high ICA model orders, a new framework for group-ICA analysis was introduced. The framework involved concatenation of IC maps prior to permutation tests, which enables statistical inferences from all selected RSNs. In SAD patients, this new correction enabled the detection of significantly increased functional connectivity in eleven RSNs. / Tiivistelmä
Toiminnallisten aivoalueiden välinen viestintä on todennäköisesti avainasemassa kognitiivisissa prosesseissa, jotka edellyttävät jatkuvaa tiedon integraatiota aivojen eri alueiden välillä. Tämä tekee ihmisaivojen toiminnallisen kytkennällisyyden tutkimuksesta erittäin tärkeätä. Kytkennälllisyyden tutkiminen antaa myös uutta tietoa ihmisaivojen osa-alueiden välisestä hierarkiasta. Aivojen hermoverkot voidaan luotettavasti ja toistettavasti havaita lepotilan toiminnasta yksilö- ja ryhmätasolla käyttämällä itsenäisten komponenttien analyysia (engl. Independent component analysis, ICA). Yhä useammat ICA-tutkimukset ovat raportoineet poikkeuksellisia toiminnallisen konnektiviteetin muutoksia kliinisissä populaatioissa. Tässä tutkimuksessa hypotetisoitiin, että ICA:lla laskettaujen komponenttien lukumäärä (l. asteluku) vaikuttaa tuloksena saatujen hermoverkkojen ominaisuuksiin kuten tilavuuteen ja kytkennällisyyteen. Lisäksi oletettiin, että korkea ICA-asteluku voisi olla herkempit tuottamaan yksityiskohtaisia toiminnallisen jaottelun tuloksia. Aivojen lepotilan hermoverkkojen ominaisuudet, kuten anatominen jakautuminen, volyymi ja lepohermoverkkojen havainnoinnin toistettavuus evaluoitin. Myös toiminnallisen kytkennällisyyden erot tutkitaan eri ICA-asteluvuilla. Havaittiin että asteluvulla on huomattava vaikutus aivojen lepotilan hermoverkkojen tilaominaisuuksiin sekä niiden jakautumiseen alaverkoiksi. Pienillä asteluvuilla hermoverkojen neuroanatomisesti erilliset yksiköt pyrkivät keräytymään laajoiksi yksittäisiksi komponenteiksi, kun taas korkeammilla asteluvuilla ne havaitaan erillisinä. Sairauksien aiheuttamat muutokset toiminnallisessa kytkennällisyydessä näyttävät muuttuvan myös ICA asteluvun mukaan saavuttaen maksiminsa korkeilla asteluvuilla. Korkeilla asteluvuilla voidaan havaita yksityiskohtaisia, sairaudelle ominaisia toiminnallisen konnektiviteetin muutoksia. Korkeisiin ICA asteluvun liittyvän tilastollisen monivertailuongelman ratkaisemiseksi kehitimme uuden menetelmän, jossa permutaatiotestejä edeltävien itsenäisten IC-karttoja yhdistämällä voidaan tehdä luotettava tilastollinen arvio yhtä aikaa lukuisista hermoverkoista. Kaamosmasennuspotilailla esimerkiksi kehittämämme korjaus paljastaa merkittävästi lisääntynyttä toiminnallista kytkennällisyyttä yhdessätoista hermoverkossa.
|
2 |
Resting state brain networks in young people with familial risk for psychosisJukuri, T. (Tuomas) 16 February 2016 (has links)
Abstract
Neuropsychiatric illnesses usually become overtly manifest in adolescence and early adulthood. A critical long-term aim is to be able to prevent the development of such illnesses, which requires instruments to identify subjects at high risk of illness and to offer them effective interventions. There is an indisputable need for more sophisticated methods to enable more precise detection of adolescents and young adults who are at high risk of developing psychosis.
Abnormal function in brain networks has been reported in people with schizophrenia and other psychotic disorders. Similar abnormalities have been found also in people at risk for developing psychosis, but it is not known whether this applies also to spontaneous resting state activity in young people with a familial risk for psychosis.
We conducted resting-state functional MRI (R-fMRI) in 72 (29 male) young adults with a history of psychosis in one or both parents (FR) but without psychosis themselves, and 72 (29 male) similarly healthy control subjects without familial risk for psychosis. Both groups in the Oulu Brain and Mind study were drawn from the Northern Finland Birth Cohort 1986. All volunteers were 20–25 years old. Parental psychosis was established using the Care Register for Health Care. R-fMRI data was pre-processed using independent component analysis (ICA). A dual regression technique was used to detect between-group differences with p < 0.05 threshold corrected for multiple comparisons at voxel level.
FR subjects demonstrated significantly decreased activity compared to control subjects in the default mode network and in the central executive network and increased activity in the cerebellum.
The findings clarify previously controversial literature on the subject. The finding suggests that abnormal activity in these brain networks in rest may be associated with increased vulnerability to psychosis. The findings maybe helpful in developing more precise methods for detecting young people at highest risk for developing psychosis. / Tiivistelmä
Psykoottisiin häiriöihin sairastutaan yleensä nuoruudessa tai varhaisaikuisuudessa. Psykoositutkimuksen tavoitteena on löytää uusia menetelmiä, joiden avulla kyettäisiin tunnistamaan suurimmassa psykoosiriskissä olevat nuoret, jotta heille voitaisiin tarjota sairautta ennaltaehkäiseviä hoitokeinoja.
Skitsofreniaan ja muihin psykoottisiin häiriöihin sairastuneilla on havaittu aivotoiminnan poikkeavuuksia. Samankaltaisia aivotoiminnan poikkeavuuksia on havaittu myös nuorilla, jotka ovat vaarassa sairastua psykoosiin. Toistaiseksi on ollut epäselvää, onko psykoosiin sairastuneiden henkilöiden lapsilla aivohermoverkkojen toiminnan poikkeavuuksia lepotilassa.
Suoritimme aivojen lepotilan MRI-tutkimuksen (R-fMRI) 72:lle (29 miestä) nuorelle aikuiselle, joiden jompikumpi vanhempi oli sairastunut psykoosin sekä 72:lle (29 miestä) nuorelle aikuiselle, joiden vanhemmat eivät olleet sairastaneet psykoosia. Molemmat tutkimusryhmät tässä Oulu Brain and Mind -tutkimuksessa olivat Pohjois-Suomen 1986 syntymäkohortin jäseniä. Tutkittavat olivat 20–25 vuoden iässä. Lepotilan toiminnallinen magneettikuvaus suoritettiin 1.5 Teslan Siemensin magneettikuvantamislaitteella. Tutkimuskohteiksi valittiin lepotilan toiminnallinen aivohermoverkko, toiminnan ohjauksesta vastaava aivohermoverkko ja pikkuaivot. Kuvantamisdataan sovellettiin itsenäisten komponenttien analyysia aivohermoverkkojen määrittämistä varten. Ryhmien välisen eron havaitsemiseen käytettiin ei-parametristä permutaatiotestiä, joka kynnystettiin tilastollisesti merkitsevään tasoon (p < 0.05).
Lepotilan oletushermoverkossa ja toiminnanohjauksesta vastaavassa aivohermoverkoissa havaittiin vähäisempää aktiivisuutta ja pikkuaivoissa kohonnutta aktiivisuutta perinnöllisessä psykoosiriskissä olevilla nuorilla aikuisilla verrattuna verrokkeihin.
Tutkimustulokset selkeyttivät aiempaa ristiriitaista kirjallisuutta tutkimusaiheesta. Tutkimuksessa havaittujen aivoalueiden poikkeava toiminta lepotilassa voi liittyä kohonneeseen psykoosin puhkeamisriskiin. Tutkimuslöydösten avulla voidaan todennäköisesti edesauttaa parempien kuvantamismenetelmien kehittämistä suurimmassa psykoosiriskissä olevien nuorten tunnistamiseen.
|
Page generated in 0.0816 seconds