• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise do exercício de agachamento utilizando o método de Kane /

Nogueira, Rodrigo Pereira. January 2011 (has links)
Orientador: José Elias Tomazini / Banca: José Geraldo Trani Brandão / Banca: Renato Rocha / Resumo: O sedentarismo é crescente na população mundial e com ele cresce a incidência das doenças crônicas degenerativas. Em contrapartida têm-se os exercícios físicos que são recomendados para a prevenção, tratamento e reabilitação dessas doenças. A musculação é um desses exercícios e sua prática cresce cada dia mais. Dentre todos os exercícios que podem ser realizados na musculação, está o agachamento, que é muito utilizado para fortalecer a musculatura dos membros inferiores, porém a execução errônea do mesmo pode acarretar lesões irreversíveis ao praticante. Atualmente são utilizados conceitos biomecânicos para estudar e compreender os esforços mecânicos acerca do agachamento visando a proteção do sistema musculoesquelético. A presente dissertação tem como objetivo aplicar o método de Kane a um modelo de corpo humano buscando analisar os torques articulares e as forças nos tendões musculares dos membros inferiores durante o exercício de agachamento. A instrumentação contou com modelo biomecânico bidimensional (2D) desenvolvido a partir do método de Kane, que consiste na análise do sistema multicorpo através de conceitos de velocidades, forças ativas e inércia generalizadas. Os resultados de pico de torque encontrados foram de 36,9 N.m no tornozelo, 51 N.m no joelho e 119,1 N.m no quadril. Os resultados de picos de força nos tendões musculares foram de 1290 N no gastrocnêmio, 723 N no quadríceps e 730 N nos isquiotibiais. O método se mostrou eficaz ao calcular os esforços mecânicos nas articulações de membros inferiores, porém são necessários mais estudos englobando um maior número de variáveis para completa elucidação do assunto. / Abstract: Physical inactivity is increasing in the world population and with it the incidence of chronic degenerative diseases grows. In contrast, there are the exercises that are recommended for the prevention, treatment and rehabilitation of these diseases. Strength training is one of these exercises and their practice grows every day. Among all the exercises can be performed, is the squat, which is widely used to strengthen the muscles of the lower limbs, however the erroneous execution can result in irreversible damage. Biomechanical concepts are currently used to study and understand the mechanical stress on the squat in order to protect the musculoskeletal system. This study aims to apply the Kane's method to a human body model seeking to analyze the joint torques and muscle forces in the tendons of the lower limbs during the squat. The instrumentation featured biomechanical model with two-dimensional (2D) developed from Kane's method, which consists of analysis of multibody systems using concepts of generalized speed, generalized active forces and generalized inertia. The results of peak torque were 36.9 N.m in the ankle, 51 N.m in the knee and 119.1 N.m in the hip. The results of peak strength in the muscle tendons were 1290 N in the gastrocnemius, 723 N in the quadriceps to 730 N in the hamstrings. The method was reliable to calculate the mechanical stress on the joints of the lower limbs, but more studies are needed covering a larger number of variables to complete elucidation of this subject. / Mestre
2

Análise do exercício de agachamento utilizando o método de Kane

Nogueira, Rodrigo Pereira [UNESP] 14 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-14Bitstream added on 2014-06-13T20:18:21Z : No. of bitstreams: 1 nogueira_rp_me_guara.pdf: 931314 bytes, checksum: 6d876c670577d2caa4189e93a9106a4f (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O sedentarismo é crescente na população mundial e com ele cresce a incidência das doenças crônicas degenerativas. Em contrapartida têm-se os exercícios físicos que são recomendados para a prevenção, tratamento e reabilitação dessas doenças. A musculação é um desses exercícios e sua prática cresce cada dia mais. Dentre todos os exercícios que podem ser realizados na musculação, está o agachamento, que é muito utilizado para fortalecer a musculatura dos membros inferiores, porém a execução errônea do mesmo pode acarretar lesões irreversíveis ao praticante. Atualmente são utilizados conceitos biomecânicos para estudar e compreender os esforços mecânicos acerca do agachamento visando a proteção do sistema musculoesquelético. A presente dissertação tem como objetivo aplicar o método de Kane a um modelo de corpo humano buscando analisar os torques articulares e as forças nos tendões musculares dos membros inferiores durante o exercício de agachamento. A instrumentação contou com modelo biomecânico bidimensional (2D) desenvolvido a partir do método de Kane, que consiste na análise do sistema multicorpo através de conceitos de velocidades, forças ativas e inércia generalizadas. Os resultados de pico de torque encontrados foram de 36,9 N.m no tornozelo, 51 N.m no joelho e 119,1 N.m no quadril. Os resultados de picos de força nos tendões musculares foram de 1290 N no gastrocnêmio, 723 N no quadríceps e 730 N nos isquiotibiais. O método se mostrou eficaz ao calcular os esforços mecânicos nas articulações de membros inferiores, porém são necessários mais estudos englobando um maior número de variáveis para completa elucidação do assunto. / Physical inactivity is increasing in the world population and with it the incidence of chronic degenerative diseases grows. In contrast, there are the exercises that are recommended for the prevention, treatment and rehabilitation of these diseases. Strength training is one of these exercises and their practice grows every day. Among all the exercises can be performed, is the squat, which is widely used to strengthen the muscles of the lower limbs, however the erroneous execution can result in irreversible damage. Biomechanical concepts are currently used to study and understand the mechanical stress on the squat in order to protect the musculoskeletal system. This study aims to apply the Kane’s method to a human body model seeking to analyze the joint torques and muscle forces in the tendons of the lower limbs during the squat. The instrumentation featured biomechanical model with two-dimensional (2D) developed from Kane’s method, which consists of analysis of multibody systems using concepts of generalized speed, generalized active forces and generalized inertia. The results of peak torque were 36.9 N.m in the ankle, 51 N.m in the knee and 119.1 N.m in the hip. The results of peak strength in the muscle tendons were 1290 N in the gastrocnemius, 723 N in the quadriceps to 730 N in the hamstrings. The method was reliable to calculate the mechanical stress on the joints of the lower limbs, but more studies are needed covering a larger number of variables to complete elucidation of this subject.
3

An examination of age-related differences in lower extremity joint torques and strains in the proximal femur during gait

Anderson, Dennis E. 16 April 2010 (has links)
Hip fractures are serious injuries that are associated with high rates of morbidity and mortality in older adults. While much of the increased risk of hip fracture with age can be explained by age-related decreases in bone mineral density, muscles and motor control are altered by aging as well. Muscles forces in vivo are thought to have a prophylactic effect that can reduce shear and bending in the femur. This is beneficial because bone is stronger in compression than in shear or tension, and shear plays an important role in fatiguing bone. Understanding how aging and muscular loads affect strains in the proximal femur could lead to improvements in clinical screening and preventative measures for hip fracture. Three studies were performed to investigate age-related changes in neuromuscular function during gait and how these changes affect strains in the proximal femur. Study 1 examined age differences in peak lower extremity joint torques during walking with controlled speed and step length. Studies 2 and 3 applied muscle forces estimated during gait to finite element models of the femur. Study 2 examined age differences in femoral strains, and Study 3 examined the sensitivity of strains to individual muscle forces. The results support the idea that older adults walk with reduced contributions from the ankle plantar flexors and increased contributions from the hip extensors. Interactions between age and speed indicate that older adults utilized a different neuromuscular strategy than young adults to vary the speed of their gait. No age differences were found for the largest magnitude strains in the proximal femur. However, young adults were able to apply larger loads to the femur without corresponding increases in femoral strains. Strains in the femoral neck were found to be sensitive to muscle forces, particularly hip abductor forces. Strains in the sub-trochanteric region tended to be larger than those in the femoral neck, and less sensitive to muscle forces. These results increase our understanding of neuromuscular changes that occur with age, and the effects of these changes on the femur. / Ph. D.
4

Design of a Humanoid Robot for Disaster Response

Lee, Bryce Kenji Tim-Sung 21 April 2014 (has links)
This study focuses on the design and implementation of a humanoid robot for disaster response. In particular, this thesis investigates the lower body design in detail with the upper body discussed at a higher level. The Tactical Hazardous Operations Robot (THOR) was designed to compete in the DARPA Robotics Challenge where it needs to complete tasks based on first-responder operations. These tasks, ranging from traversing rough terrain through driving a utility vehicle, suggest a versatile platform in a human sized form factor. A physical experiment of the proposed tasks generated a set of joint range of motions (RoM). Desired limb lengths were determined by comparing existing robots, the test subject in the experiment of proposed tasks, and an average human. Simulations using the desired RoM and limb lengths were used to calculate baseline joint torques. Based on the generated design constraints, THOR is a 34 degree of freedom humanoid that stands 1.78 [m] tall and weighs 65 [kg]. The 12 lower body joints are driven by series elastic linear actuators with multiple joints actuated in parallel. The parallel actuation mimics the human body, where multiple muscles pull on the same joint cooperatively. The legs retain high joint torques throughout their large RoM with some joints achieving torques as high as 289 [Nm]. The upper body uses traditional rotary actuators to drive the waist, arms, and head. The proprioceptive sensor selection was influenced by past experience on humanoid platforms, and perception sensors were selected to match the competition. / Master of Science
5

Comparison of high density and bipolar surface EMG for ankle joint kinetics using machine learning / Jämförelse av yt-EMG med hög densitet och bipolära elektroder för fotledskinetik med maskininlärning

Aresu, Federica January 2021 (has links)
The relationship between sEMG signals and muscle force, and associated joint torque, is an object of study for clinical applications such as rehabilitation robotics and commercial applications as wearable motion control devices. The information type and quality obtained by sEMG can impact the classification and prediction accuracy of ankle joint torque. In this thesis project, HD-sEMG based data was collected together with ankle joint torque measurements from 5 subjects during MVIC of plantarflexors and dorsiflexors. Machine learning approaches ideally suited for nonlinear regression tasks, such as MLP and LSTM, have been implemented and evaluated to best predict joint torque profiles given extracted features from sEMG data. An evaluation of machine learning performances using HD-sEMG data over bipolar sEMG data has been conducted in intra-session, inter-subjective and intra-subjective study cases.
6

Evaluation of the Length-Tension Relationship in an Elderly Population

Van Schaik, Charmaine S. 08 1900 (has links)
The effects of aging on the muscle length (as inferred by joint angle)-tension relationship was studied in the ankle dorsiflexors of male and female subjects aged 20-40 years (x=25.3; 15d, 159) and 60-80 years (x=68.8; 15d, 159) at 10 joint angles {15°0 through 30°P, in 5° increments). Isometric twitches, voluntary contractions, and 1-sec evoked tetanic contractions {20, 50 & 80 Hz) were measured in the R-tibialis anterior muscle. The resting joint angle for the ankle dorsi flexors was similar between elderly and young adults {13°P ± 3.44). On average, evoked and voluntary torque output increased upon muscle lengthening beyond resting length, and decreased upon shortening. Evoked single twitches of the TA revealed that peak total torque occurred at the extreme of plantarflexion (30°P} in both elderly and young adults. Most importantly, elderly individuals produced similar twitch torque values at all joint angles compared to young adults. Maximal voluntary torque was stronger at the more plantarflexed compared to the dorsiflexed angles, for all subjects, regardless of age, with maximum torque plateauing at 15°P. Elderly subjects demonstrated much reduced MVC torque values compared to young adults at all joint angles (ave.= 18% reduction, p<O.Ol) while maintaining no less than 96% motorunit activation (MUA) . Stimulation of the dorsiflexors at 20, 50, & 80 Hz revealed that the 1-sec peak tetanic torques declined from a maximum at 30°P through to 15°0 for all subjects. Elderly adults produced significantly less tetanic torque at all joint angles compared to young adults (p<0.05). There was no difference between the elderly and young adults in the rate at which the rise in tetanic torque was developed at all joint angles, but elderly adults displayed a significantly greater twitch/tetanus ratio as compared to young adults (p<0.005). In conclusion, these results suggest that there is no age-associated change in the elastic properties of the ankle dorsiflexors, and thus, the length-tension relationship of this muscle group is similar between elderly and young adults. / Thesis / Master of Science (MSc)
7

Análise da propagação de incertezas no método de dinâmica inversa tridimensional para membro inferior durante a marcha em diferentes velocidades / Analysis of propagation of uncertainties in the inverse dynamics method three-dimensional lower limb during gait at different velocities

Franklin de Camargo Junior 24 September 2012 (has links)
O objetivo deste estudo foi investigar o efeito do erro na localização do centro de pressão (5 e 10 mm) nas incertezas de momentos articulares dos membros inferiores em diferentes velocidades de marcha (1,0, 1,5 e 2,0 m/s). Nossas hipóteses foram que: as incertezas absolutas de momento articular diminuam de distal para o proximal e da condição de maior para a de menor velocidade. Os momentos articulares de cinco adultos jovens saudáveis foram calculados pelo método bottom-up de dinâmica inversa 3D, na dependência do qual estimamos as incertezas propagadas. Os resultados indicaram que existe uma relação diretamente proporcional entre os erros do centro de pressão e as incertezas de momento articular. As incertezas absolutas nos picos de momento expressas no sistema de referência anatômico diminuíram de distal para proximal, confirmando nossa primeira hipótese, exceto para o momento de abdução. Da menor para a maior velocidade de marcha ocorreu um aumento da incerteza no momento (de até 0,04 Nm/kg), confirmando agora nossa segunda hipótese, exceto, mais uma vez, para abduções de joelho e quadril. E ainda, as incertezas relativas variaram dependendo do plano e articulação (entre 5 e 31%), sendo os momentos articulares de joelho os mais afetados / The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 Nm/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected
8

Análise da propagação de incertezas no método de dinâmica inversa tridimensional para membro inferior durante a marcha em diferentes velocidades / Analysis of propagation of uncertainties in the inverse dynamics method three-dimensional lower limb during gait at different velocities

Camargo Junior, Franklin de 24 September 2012 (has links)
O objetivo deste estudo foi investigar o efeito do erro na localização do centro de pressão (5 e 10 mm) nas incertezas de momentos articulares dos membros inferiores em diferentes velocidades de marcha (1,0, 1,5 e 2,0 m/s). Nossas hipóteses foram que: as incertezas absolutas de momento articular diminuam de distal para o proximal e da condição de maior para a de menor velocidade. Os momentos articulares de cinco adultos jovens saudáveis foram calculados pelo método bottom-up de dinâmica inversa 3D, na dependência do qual estimamos as incertezas propagadas. Os resultados indicaram que existe uma relação diretamente proporcional entre os erros do centro de pressão e as incertezas de momento articular. As incertezas absolutas nos picos de momento expressas no sistema de referência anatômico diminuíram de distal para proximal, confirmando nossa primeira hipótese, exceto para o momento de abdução. Da menor para a maior velocidade de marcha ocorreu um aumento da incerteza no momento (de até 0,04 Nm/kg), confirmando agora nossa segunda hipótese, exceto, mais uma vez, para abduções de joelho e quadril. E ainda, as incertezas relativas variaram dependendo do plano e articulação (entre 5 e 31%), sendo os momentos articulares de joelho os mais afetados / The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 Nm/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected
9

Requirements for effective collision detection on industrial serial manipulators

Schroeder, Kyle Anthony 16 October 2013 (has links)
Human-robot interaction (HRI) is the future of robotics. It is essential in the expanding markets, such as surgical, medical, and therapy robots. However, existing industrial systems can also benefit from safe and effective HRI. Many robots are now being fitted with joint torque sensors to enable effective human-robot collision detection. Many existing and off-the-shelf industrial robotic systems are not equipped with these sensors. This work presents and demonstrates a method for effective collision detection on a system with motor current feedback instead of joint torque sensors. The effectiveness of this system is also evaluated by simulating collisions with human hands and arms. Joint torques are estimated from the input motor currents. The joint friction and hysteresis losses are estimated for each joint of an SIA5D 7 Degree of Freedom (DOF) manipulator. The estimated joint torques are validated by comparing to joint torques predicted by the recursive application of Newton-Euler equations. During a pick and place motion, the estimation error in joint 2 is less than 10 Newton meters. Acceleration increased the estimation uncertainty resulting in estimation errors of 20 Newton meters over the entire workspace. When the manipulator makes contact with the environment or a human, the same technique can be used to estimate contact torques from motor current. Current-estimated contact torque is validated against the calculated torque due to a measured force. The error in contact force is less than 10 Newtons. Collision detection is demonstrated on the SIA5D using estimated joint torques. The effectiveness of the collision detection is explored through simulated collisions with the human hands and arms. Simulated collisions are performed both for a typical pick and place motion as well as trajectories that transverse the entire workspace. The simulated forces and pressures are compared to acceptable maximums for human hands and arms. During pick and place motions with vertical and lateral end effector motions at 10mm/s and 25mm/s, the maximum forces and pressures remained below acceptable levels. At and near singular configurations some collisions can be difficult to detect. Fortunately, these configurations are generally avoided for kinematic reasons. / text
10

Joint Torque Feedback for Motion Training with an Elbow Exoskeleton

Kim, Hubert 28 October 2021 (has links)
Joint torque feedback (JTF) is a new and promising means of kinesthetic feedback to provide information to a person or guide them during a motion task. However, little work has been done to apply the torque feedback to a person. This project evaluates the properties of JTF as haptic feedback, starting from the fabrication of a lightweight elbow haptic exoskeleton. A cheap hobby motor and easily accessible hardware are introduced for manufacturing and open-sourced embedded architecture for data logging. The total cost and the weights are $500 and 509g. Also, as the prerequisite step to assess the JTF in guidance, human perceptual ability to detect JTF was quantified at the elbow during all possible static and dynamic joint statuses. JTF slopes per various joint conditions are derived using the Interweaving Staircase Method. For either directional torque feedback, flexional motion requires 1.89-2.27 times larger speed slope, in mNm/(°/s), than the extensional motion. In addition, we find that JTFs during the same directional muscle's isometric contraction yields a larger slope, in mNm/mNm, than the opposing direction (7.36 times and 1.02 times for extension torque and flexion torque). Finally, the guidance performance of the JTF was evaluated in terms of time delay and position error between the directed input and the wearer's arm. When studying how much the human arm travels with JTF, the absolute magnitude of the input shows more significance than the duration of the input (p-values of <0.0001 and 0.001). In the analysis of tracking the pulse input, the highest torque stiffness, 95 mNm/°, is responsible for the smallest position error, 6.102 ± 5.117°, despite the applied torque acting as compulsory stimuli. / Doctor of Philosophy / Joint torque feedback (JTF) is a new and promising means of haptic feedback to provide information to a person or guide them during a motion task. However, little work has been done to apply the torque feedback to a person, such as determining how well humans can detect external torques or how stiff the torque input should be to augment a human motion without interference with the voluntary movement. This project evaluates the properties of JTF as haptic feedback, starting from the fabrication of a lightweight elbow haptic exoskeleton. The novelty of the hardware is that we mask most of the skin receptors so that the joint receptors are primarily what the body will use to detect external sensations. A cheap hobby motor and easily accessible hardware are introduced for manufacturing and open-sourced software architecture for data logging. The total cost and the weight are $500 and 509g. Also, as the prerequisite step to assess the JTF in guidance, human perceptual ability to detect JTF was quantified at the elbow during all possible static and dynamic joint statuses. A psychophysics tool called Interweaving Staircase Method was implemented to derive torque slopes per various joint conditions. For either directional torque feedback, flexional motion requires 1.89-2.27 times larger speed slope, in mNm/(°/s) than the extensional motion. In addition, the muscles' isometric contraction with the aiding direction required a larger slope, in $mathrm{mNm/mNm}$ than the opposing direction (7.36 times and 1.02 times for extension torque and flexion torque). Finally, the guidance performance of the JTF was evaluated in terms of time delay and position error between the directed input and the wearer's arm. When studying how much the human arm travels with JTF, the absolute magnitude of the input shows more significance than the duration of the input (p-values of <0.0001 and 0.001). In the analysis of tracking the pulse input, the highest torque stiffness, 95 mNm/°, is responsible for the smallest position error, 6.102 ± 5.117°, despite the applied torque acting as compulsory stimuli.

Page generated in 0.0629 seconds