131 |
Investorenbindung als ein Ziel des Finanzmarketing : eine Analyse des Verhaltens privater Investoren von DAX-Unternehmen /Bramann, Juliane. January 2004 (has links) (PDF)
Diss. Univ. St. Gallen, 2004.
|
132 |
Performance und Bewertung von Immobilienportfolios /Eckmann Urbanski, Carmen. January 2005 (has links) (PDF)
Diss. Wirtsch.-wiss. St. Gallen, 2005 ; Nr. 2977. / Literaturverz.
|
133 |
Die Rolle der Global Reporting Initiative bei der Selektion nachhaltiger Kapitalanlagen am Beispiel der Bank Sarasin Sustainability MatrixMeier, Matthias. January 2008 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2008.
|
134 |
Aktienperformance in Deutschland : Essays über Renditen, Anlagedauer und Kursschocks /Ising, Jan. January 2006 (has links) (PDF)
Herdecke, Privatuniv., Diss--Witten, 2006.
|
135 |
Die Gefährdung des Kapitalanlagemarktes durch Fehlinformation : eine Analyse der Schutzmassnahmen unter Beachtung des Ultima-Ratio-Prinzips /Bischofberger, Sarah Maria. January 2008 (has links)
Zugl.: Konstanz, Universiẗat, Diss., 2008.
|
136 |
Anlagestrategien für Pensionsvermögen im Rahmen von Contractual Trust Arrangementsvan den Bergh-Mehner, Stefanie 22 December 2011 (has links)
Die vorliegende Arbeit behandelt die Anlage von Pensionsvermögen im Rahmen von Contractual Trust Arrangements. Es wird untersucht, welche Anlagestrategien sich unter Berücksichtigung bilanzieller, verpflichtungs- und vermögensseitiger Rahmenbedingungen zur Anlage von Pensionsvermögen eignen. Anhand eines geeigneten Anlagemodells für Pensionsvermögen und der Durchführung einer stochastischen Simulation wird analysiert, welchen Einfluss unterschiedliche Anlagestrategien auf die Entwicklung des Pensionsvermögens haben. Die Arbeit geht zunächst den Hintergrund der betrieblichen Altersversorgung und Contractual Trust Arrangements in Deutschland ein. Zur Abbildung der Verpflichtungsseite und der Mitarbeiterstruktur des Unternehmens wird unter Einbezug aktuarischer Ansätze ein Mitarbeitermodell entwickelt. Das in der Arbeit entwickelte Portfoliomodell integriert die Verpflichtungs- und Vermögensseite und zeigt, wie das Vermögen zur Deckung leistungsorientierter Zusagen zur betrieblichen Altersversorgung unter Einbezug der Unternehmensperspektive mit Hilfe dynamischer Risikonebenbedingungen geeignet angelegt werden kann.
|
137 |
Anlagestrategien für Pensionsvermögen im Rahmen von Contractual Trust Arrangementsvan den Bergh-Mehner, Stefanie 04 January 2012 (has links)
Die vorliegende Arbeit behandelt die Anlage von Pensionsvermögen im Rahmen von Contractual Trust Arrangements. Es wird untersucht, welche Anlagestrategien sich unter Berücksichtigung bilanzieller, verpflichtungs- und vermögensseitiger Rahmenbedingungen zur Anlage von Pensionsvermögen eignen. Anhand eines geeigneten Anlagemodells für Pensionsvermögen und der Durchführung einer stochastischen Simulation wird analysiert, welchen Einfluss unterschiedliche Anlagestrategien auf die Entwicklung des Pensionsvermögens haben. Die Arbeit geht zunächst auf den Hintergrund der betrieblichen Altersversorgung und Contractual Trust Arrangements in Deutschland ein. Zur Abbildung der Verpflichtungsseite und der Mitarbeiterstruktur des Unternehmens wird unter Einbezug aktuarischer Ansätze ein Mitarbeitermodell entwickelt. Das in der Arbeit entwickelte Portfoliomodell integriert die Verpflichtungs- und Vermögensseite und zeigt, wie das Vermögen zur Deckung leistungsorientierter Zusagen zur betrieblichen Altersversorgung unter Einbezug der Unternehmensperspektive mit Hilfe dynamischer Risikonebenbedingungen geeignet angelegt werden kann.
|
138 |
New insights into conjugate dualityGrad, Sorin - Mihai 19 July 2006 (has links) (PDF)
With this thesis we bring some new results and improve some
existing ones in conjugate duality and some of the areas it is
applied in.
First we recall the way Lagrange, Fenchel and Fenchel - Lagrange
dual problems to a given primal optimization problem can be
obtained via perturbations and we present some connections between
them. For the Fenchel - Lagrange dual problem we prove strong
duality under more general conditions than known so far, while for
the Fenchel duality we show that the convexity assumptions on the
functions involved can be weakened without altering the
conclusion. In order to prove the latter we prove also that some
formulae concerning conjugate functions given so far only for
convex functions hold also for almost convex, respectively nearly
convex functions.
After proving that the generalized geometric dual problem can be
obtained via perturbations, we show that the geometric duality is
a special case of the Fenchel - Lagrange duality and the strong
duality can be obtained under weaker conditions than stated in the
existing literature. For various problems treated in the
literature via geometric duality we show that Fenchel - Lagrange
duality is easier to apply, bringing moreover strong duality and
optimality conditions under weaker assumptions.
The results presented so far are applied also in convex composite
optimization and entropy optimization. For the composed convex
cone - constrained optimization problem we give strong duality and
the related optimality conditions, then we apply these when
showing that the formula of the conjugate of the precomposition
with a proper convex K - increasing function of a K - convex
function on some n - dimensional non - empty convex set X, where
K is a k - dimensional non - empty closed convex cone, holds under
weaker conditions than known so far. Another field were we apply
these results is vector optimization, where we provide a general
duality framework based on a more general scalarization that
includes as special cases and improves some previous results in
the literature. Concerning entropy optimization, we treat first
via duality a problem having an entropy - like objective function,
from which arise as special cases some problems found in the
literature on entropy optimization. Finally, an application of
entropy optimization into text classification is presented.
|
139 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
140 |
Die Volatilität der Finanzmärkte : Konzepte und Umsetzungsmöglichkeiten im Portfolio-Management /Thomas, Michael Daniel. January 2008 (has links)
Universiẗat, Diss.--Hannover, 2007.
|
Page generated in 0.0358 seconds