• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 57
  • 40
  • 16
  • 9
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 218
  • 33
  • 32
  • 30
  • 29
  • 28
  • 27
  • 21
  • 20
  • 16
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Screening for activators of NF-kB using Sleeping Beauty Transposons

Dasgupta, Maupali 01 February 2008 (has links)
No description available.
72

Dissecting the Roles of the Non-canonical NF-kB signaling in the Pathogenesis of Lymphoma and Autoimmunity

Wang, Zhe 18 June 2008 (has links)
No description available.
73

The dynamics of Si small point defects and formation of Si extended structures

Du, Yaojun 07 October 2005 (has links)
No description available.
74

Siglec-G Is A Negative Regulator Of Nf-Kb Activation And Has Pivotal Roles In B-1 Cell Development And Resistance To Sepsis

Ding, Cheng 17 November 2008 (has links)
No description available.
75

Role of cIAP1 and cIAP2 in Skeletal Muscle

Whitney, Rachael 25 July 2022 (has links)
The cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2) proteins are essential regulators of the classical and alternative NF-κB pathways. The NF-κB pathway has been shown to be an important regulator of myogenesis and plays a role in skeletal muscle disease, but the involvement of cIAP1 and cIAP2 has not been examined in healthy skeletal muscle. I sought to characterize skeletal muscle of the cIAP1-null and cIAP2-null mice. We show mice lacking cIAP1 exhibit decreased satellite cell numbers in the TA following cardiotoxin-induced injury and in the uninjured soleus muscle, suggesting cIAP1 may be important for satellite cell expansion. cIAP2 may play a role in fiber maintenance and homeostasis as we show cross- sectional are of cIAP2-null uninjured tibialis anterior fibers at 7 and 10 weeks of age were significantly smaller than wild-type fibers. Furthermore, cIAP1- and cIAP2-null mice subjected to in situ force experiments demonstrated altered twitch kinetics compared to wild-type controls in the soleus and EDL, suggesting fast and slow-twitch fibers are affected differently by loss of cIAP1 and cIAP2. Further work elucidating the downstream mechanisms by which cIAP1 and cIAP2 regulate skeletal muscle development and regeneration will be beneficial to the development of treatments for muscular disorders. In this regard, Smac mimetic compounds (SMCs) are small molecule inhibitors that target cIAP1/2 for degradation, thus provide a potential therapeutic treatment for muscular disorders.
76

A framework of Knowledge Based System for Integrated Maintenance Strategy and Operation

Milana, M., Khan, M. Khurshid, Munive-Hernandez, J. Eduardo January 2014 (has links)
No / The dependency of maintenance as a manufacturing logistic function has made the considerations and constrains of maintenance decisions complex in nature. The rapid growth of automation in manufacturing process has also increased the role of maintenance as an inseparable business partner. As consequence, maintenance strategy and operations should always be aligned with business and manufacturing perspectives within a holistic and integrated manner to achieve competitive advantage. This paper presents a framework of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO) linked to business and manufacturing perspectives. The KBIMSO framework has novelty of simultaneously highlighting the elements of business, manufacturing and maintenance perspectives which contribute to direct maintenance performance and can be used by the companies to evaluate their existing maintenance system in relation to business competitive priorities and manufacturing process requirements in order to gain optimal maintenance performance as the competitive driver. / Support for this study is provided by the Directorate of Higher Education, Ministry of National Education, Republic of Indonesia and the University of Bradford, the United Kingdom. / The full text cannot be displayed due to the publisher's copyright agreement.
77

Endogenous Stress Signaling within Human Multicellular Aggregates (Spheroids)

Jack, Graham Dillon 03 August 2006 (has links)
A wide variety of adherent mammalian cells can be induced into a reversible state of metabolic arrest (quiescence) by conversion to non-adherent multicellular aggregates. These "spheroids" can be maintained at room temperature under oxygen- and nutrient-deprived conditions for extended periods of time (weeks) as well as converted back to viable proliferating monolayers. Herein it is shown that HEK293 spheroid arrest and recovery requires the co-activation of both NF-kB and JNK, and chemical inhibition of either NF-κB nuclear translocation or JNK phosphorylation leads to cell death. Cytokine profiling within the aggregates during the arrest and recovery process is suggestive that a cyclical cascade was in operation, leading to endogenous cytokine production of TNF-Alpha, IL-1Beta, and IL-8, thereby propagating the cellular stress signal within cells as well as throughout the aggregate. Cytokines exist <i>in vivo</i> as mixtures, yet tissue culture studies delineating how cells respond to these molecules are often performed using individual effectors added exogenously. Are the results obtained in these studies true representations of physiological responses? As HEK293 multicellular aggregates (spheroids) survive long term arrest by endogenous cytokine (TNF-α and IL-1β) and chemokine (IL-8) signaling, adherent monolayer cells were evaluated for their ability to provide a "spheroid signal response" when exposed to TNF-α, IL-1β and IL-8 individually, and in combination, at concentrations observed in the aggregates. The spheroid signal transduction response was only observed when all three cytokines were present, demonstrating that signal transduction cascade mechanisms are cytokine-profile dependent. To determine if similar processes were involved in the arrest and recovery of multicellular aggregates derived from other cell types, the responses of primary human foreskin fibroblasts (HFF-2) and a glioblastoma cell line (T98G) were characterized, utilizing the procedures developed in the HEK293 study. Both the T98G and HFF-2 cell lines entered and exited from the long term arrest utilizing an autocrine response. However, while the carcinoma cell line was dependent upon NF-κB for survival, its signaling partner was Gadd45α and signaling occurred through the p38 pathway. Primary fibroblast arrest and recovery proceeded through the p38 pathway as well, but was independent of NF-κB. Thus, three different cell types and transformation states (HEK293, HFF-2, and T98G) provided three different routes to survival, all with cyclical cytokine production and signaling. These routes cannot be measured or modulated effectively in adherent monolayers. Multicellular aggregates provide higher ordered systems that can be used to describe signaling pathways within a cell, highlighting the role of autocrine responses and the synergistic relationships between cytokines and neighboring cells. / Ph. D.
78

NF-kB Inducing Kinase (NIK) Influences Eosinophil Development, Survival, and Plasticity

Trusiano, Briana Lynn 22 April 2024 (has links)
Hypereosinophilic (HES) syndrome is an umbrella term encompassing several disease subsets that affects humans and veterinary species, ultimately resulting in >1,500 eosinophils/uL circulating in the blood documented over six-months. This eventually culminates in end-organ infiltration and increased patient morbidity and mortality. In mice where the gene Map3k14 encoding NF -kB inducing kinase (NIK) is knocked out, a HES-like syndrome develops that is dependent on Th2 cells and cytokines. NIK is the upstream regulator of the noncanonical NF-kB pathway and is involved in lymphoid organ development, B cell lymphopoiesis, and myelopoiesis. In addition to regulating the noncanonical NF-kB pathway, NIK is also involved in regulation of kB dimers of the canonical NF-kB pathway and can function independent of NF-kB signaling by regulating lipid and glucose metabolism, mitochondrial, and RIP1 binding to influence cell survival and death. Despite previous studies performed in the Nik-/- model, the mechanisms underlying eosinophil development, plasticity, and fitness in conjunction with the bone marrow and splenic microenvironments have not been fully elucidated. In the present work, we reviewed current data exploring the influence of the noncanonical NF-kB pathway and NIK specifically on the development of acute myeloid leukemias (AMLs) and Myelodysplastic Syndrome (MDS) with a focus on how these mechanisms might induce subvariants of HES. We next examined the effect of NIK loss on eosinophilopoiesis within hematopoietic tissues in vivo and in various cell culture environments in vitro via cytology, histology, flow cytometry, FACS, positive cell selection, MTT assay, BrDU assay, and protein microarray analysis. Overall, our findings suggest that NIK influences eosinophil maturation, proliferation, metabolism, survival, and potentially plasticity in vivo and in vitro under different environmental conditions and Th2 cytokine influence. NIK loss was also associated with altered free and bound TNFR1 levels on day 13 in vitro. TNFR1 acts upstream of RIP1 and suggests that these differences may be due to NF-kB independent functions of NIK. Overall, these results provide further insight into the potential mechanisms underlying eosinophilopoiesis in the Nik-/- murine model. This information may prove useful in discovering new treatment options underlying subvariants of HES in both human and veterinary patients. / Doctor of Philosophy / A less well-known albeit important white blood cell (WBC) is the eosinophil. It is essential for combating parasitic infections but is also involved in allergic responses. Hypereosinophilic Syndrome (HES) is an umbrella term encompassing a variety of diseases that affects human and veterinary patients. It results in an overproduction of eosinophils not associated with parasitic infections or allergic responses. Although several variants of the disease exist, diagnosing subsets of HES poses a diagnostic challenge and can impact patient care and prognosis long term. Mice carrying a genetic deletion (Map3k14) encoding a kinase known as NF-kB inducing kinase (NIK) develop HES-like syndrome; these mice are hereafter referred to as Nik-/- mice. HES-like syndrome in Nik-/- mice develops secondary to NIK loss in Th2 lymphocytes (another type of WBC). NIK is an upstream regulator of the noncanonical NF-kB pathway that influences WBC, lymph node, and spleen development. NIK also regulates canonical NF-kB molecules and can function independent of NF-kB signaling by impacting fat and glucose metabolism, binding to mitochondria, and interacting with a kinase known as RIP1 to regulate cell death or survival. Despite previous work studying HES-like syndrome in Nik-/- mice, the specifics of the bone marrow and eosinophil development in response to Th2 cells have not been fully characterized. In the present work, we reviewed data exploring the noncanonical NF-kB pathway and NIK specifically in the development of WBC cancers and how this might manifest as HES. We then studied eosinophil development in the bone marrow, spleen and in culture for both Nik-/- and wild-type mice by assessing cell and tissue morphology, cell surface marker expression, response to Th2 signaling molecules, as well as cell maturation, death, metabolism, proliferation, and cytokine production. Our findings suggest that NIK is essential for eosinophil growth and survival. We also noted differences in a molecule known as TNFR1 in Nik-/- cultures on day 13. This molecule acts upstream of RIP1, suggesting an NF-kB independent function of NIK in regulating eosinophil maturation in response to Th2 molecules. This information may prove useful in discovering new treatments for HES in human and veterinary patients.
79

Dérégulation de l'épissage alternatif lors de l'infection par le virus HTLV-1 : rôle de Tax / Deregulation of alternative splicing during HTLV-1 infection : role of Tax

Thénoz, Morgan 10 April 2014 (has links)
Le virus T lymphotropique humain HTLV-1 est l’agent étiologique de la leucémie-lymphome T de l’adulte (ATLL) et de nombreuses maladies inflammatoires. HTLV-1 est associée à de nombreuses modifications quantitatives de l’expression des gènes cellulaires. À ce jour, ces modifications ont été décrites essentiellement à l’échelle transcriptionnelle à travers notamment les effets de l’oncoprotéine virale Tax, et plus récemment HBZ. Outre leurs impacts sur les niveaux d’activité des promoteurs, certains facteurs apparaissent jouer également un rôle dans la régulation de l’épissage alternatif. Ce mécanisme essentiel à la diversité du transcriptome et du protéome cellulaire, apparait étroitement couplé à la transcription et ses dérégulations sont de plus en plus décrites dans les phénomènes cytotoxiques et pathogènes tels que les infections et les cancers. Dans ce contexte, mon travail s’est intéressé à caractériser les profils d’expression des exons des cellules T CD4+ infectées ou non, et transformée ou non par HTLV-1 in vivo. Dans une seconde étude, j’ai abordé les aspects mécanistiques des modifications d’épissage alternatif par HTLV-1. Mes données montrent que, outre ses effets sur la régulation quantitative de l’expression des gènes cellulaires, l’activation de la voie NF-kB par l’oncogène Tax est impliquée dans la reprogrammation de l’épissage alternatif de nombreux gènes. Ces données révèlent un nouveau degré de complexité dans les mécanismes de dérégulation de l’expression des gènes cellulaires par HTLV-1 et ouvre de nouvelles perspectives d’investigations dans la compréhension des processus leucémogènes associés à l’infection par le virus HTLV-1 / Reprogramming cellular gene transcription sustains HTLV-1 viral persistence that ultimately leads to the development of adult T-cell leukemia/lymphoma (ATLL). We hypothesized that besides these quantitative transcriptional effects. HTLV-1 quantitatively modifies the pattern of cellular gene expression. Exon expression analysis shows that patients’ untransformed and malignant HTLV-1+ CD4+ T-cells exhibit multiple alternate exon usage (AEU) events. These affect either transcriptionally modified or unmodified genes, culminate in ATLL, and unveil new functional pathways involved in cancer and cell cycle. A total of 486 exon modifications occurred in untransformed infected CD4+ cells were detected in ATLL arguing for a role of AEUs in HTLV-1 leukemogenesis. Unsupervised hierarchical clustering of array data permitted to isolate exon expression patters of 3977 exons that discriminate uninfected, infected, and transformed CD4+ T-cells. Exposing cells to splicing inhibitors revealed that Sudemycin E reduces cell viability of HTLV-1 transformed cells without affecting primary control CD4+ cells and HTLV-1 negative cell lines, suggesting that the huge excess of AEU might provides news targets for treating ATLL. Taken together, these data reveal that HTLV-1 significantly modifies the structure of cellular transcripts and unmask new putative leukemogenic pathways and possible therapeutic targets
80

Análise da expressão de genes regulados pela proteína Dermicidina nas células do melanoma maligno G-361 pelo método de DNA-microarray / Gene expression analysis regulated by Dermcidin protein in G-361 malignant melanoma cell line by DNA-microarray

perez Sosa, Nancy Marcela 15 August 2014 (has links)
A proteína dermicidina (DCD) é codificada por um gene localizado na porção 12q13 do cromossomo 12, presente apenas em primatas e humanos. A proteína é secretada por células de glândulas da pele, melanócitos, neurônios e células epiteliais da mama normal. Alguns estudos inciais revelaram a participação da proteína DCD em processos oncogênicos nos carcinomas de mama, próstata e melanoma pela sua capacidade de atuar como um fator de crescimento e sobrevivência celular. Nos estudos realizados no nosso laboratório mostramos que a DCD é expressa em células normais da pele, placenta, cérebro e em vários tumores, incluindo os carcinomas de mama e melanoma maligno. Ensaios biológicos e bioquímicos mostraram que o \"knockdown\" da expressão de DCD no melanoma maligno G-361 via RNA de interferência (RNAi) diminuiu significativamente o crescimento in vitro em cultura celular e a formação de tumores em camundongos Nude. Resultados similares foram obtidos quando camundongos Nude transplantados com células de melanoma G-361 foram tratados com anticorpos policlonais de coelhos contra a proteína DCD. Para compreender melhor o papel da proteína DCD na transformação de células de melanoma G-361 foram feitos ensaios de microarranjo de DNA para identificar os genes diferencialmente expressos entre as sublinhagens pLKO (controle) e IBC-I que expressa o shRNA para o mRNA da DCD. Entre os 374 genes alterados pelo silenciamento, encontramos 162 com expressão aumentada e 212 com a expressão reduzida. Os estudos de bioinformática pelo software MetaCore mostraram que o silenciamento do gene DNA modula as vias canônicas e redes de sinalização mediadas pelo receptores e ligantes da família BAFF/APRIL que contralam a ativação do fator de transcrição NF-kB, bem como para histonas envolvidas na remodelação da cromatina. Os níveis de expressão de mRNA de 9 genes de interesse foram validados por ensaios de RT-qPCR. Em uma segunda fase do estudo, foram analisadas as proteínas presentes em extratos nuclares dos clones pLKO e IBC-I de melanoma maligno G-361 por espectrometria de massas. Nos extratos proteicos da sublinhagem pLKO foram identificadas 74 proteínas nucleares, enquanto que na sublinhagem IBC-I foram identificadas 31 proteínas. Um grupo de 21 proteínas foi identificado em ambas sublinhagens. Estudos de bioinformática pelo programa STRING revelou que 14 das proteínas identificadas na sublinagem G-361-pLKO faziam interações diretas ou indiretas com a DCD. A rede formada por estas proteínas tem como centro a proteína p53, uma proteína chave na regulação do programa de morte celular e sobrevivência ao estresse oxidativo. Por outro lado, notou-se que a maioria das proteínas identificadas no extrato nuclear da sublinhagem IBC-I é da família das histonas e que poderiam atuar em complexos de remodelação da cromatina nas células G-361-IBC-I. Nossos resultados nos possibilitaram sugerir que futuros estudos sobre a expressão das histonas e suas modificações pós-traducionais poderão ajudar a desvendar o possível papel da DCD na regulação epigenética do melanoma e em outros tipos de cânceres / Dermcidin (DCD) is a human gene mapped to chromosome 12q13 region, only identified in primates and humans, and normally expressed in the eccrine glands of skin and brain. Several studies have confirmed that DCD-derived peptides contribute to innate and immune surveillance and in the oncogenic processes of breast, prostate and skin cancers, as revealed by its role as a growth factor and cell survival. We have further explored DCD function and its tumorigenic potential on skin melanocytes by specifically knocking down its expression in G-361 malignant melanoma cells via expressing constitutively short hairpin RNA against DCD mRNA. Biological and biochemical assays showed that the \"knockdown\" in the expression of DCD in G-361-pLKO control clone and a G-361-IBC-I clone expressing constitutively short hairpin RNA against DCD mRNA decreased significantly the in vitro growth in cell culture and tumor formation in nude mice. Similar results were obtained treating nude mice bearing G-361 melanoma xenografts with rabbit polyclonal antibodies against DCD protein. Here, we present a DNA microarray-based study that identified the genes that are up- and down-regulated in a G-361-pLKO control clone and a G-361-IBC-I clone expressing constitutively short hairpin RNA against DCD mRNA. A total of 372 genes differentially expressed were identified; being 162 genes up-regulated and 212 genes down-regulated. Bioinformatic studies showed that DCD gene silencing modulates canonical pathways and signaling networks mediated APRIL/BAFF receptors and ligands and NF-kB signaling pathway as well as chromatin remodeling mediated by histone family. The mRNA expression levels of 9 genes of interest were validated by RT-qPCR assays. Next we analyzed the proteins present in nuclear extracts from G-361- pLKO and G-361-IBC-I clones by mass spectrometry. We identified 74 proteins in the G-361-pLKO clone and 31 proteins in the G-361-IBC-I. A group of 21 proteins was identified in both sublineages. Bioinformatics analyses by STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) platform showed that a small portion of the proteins identified only in G-361- pLKO cells was predicted to interact directly with DCD. The network formed by these proteins is centered in the p53 protein, a key regulator of survival and cell death program in response to DNA damage and oxidative stress. On the other hand, this network was completed abrogated using the nuclear protein from G-361-IBC-I because of absence of DCD protein. Since most of the proteins identified in nuclear extracts are of the histone family, it is likely that they are acting in the chromatin-remodeling complexes which are important to remodel nucleosomes of the G-361-IBC-I cells. Our results allowed us to suggest that future studies on the expression of histones and their posttranslational modifications may help to unravel the possible role of DCD in the epigenetic regulation of melanoma and other cancers

Page generated in 0.0378 seconds