Spelling suggestions: "subject:"confusion"" "subject:"d'infusion""
11 |
Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation methodNegoita, Cezar Ciprian. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Dresden.
|
12 |
Messung und Analyse von neutroneninduzierten Aktivitäten in Materialien zukünftiger KernfusionsreaktorenEichin, Randy 10 November 2004 (has links) (PDF)
The radioactivity induced by neutrons in the materials of future fusion devices represents a central topic of safety- and environmental-related investigations. For the design and operation of future fusion devices, like the International Experimental Thermonuclear Reactor ITER or power plants like DEMO, the activation performance of the materials during operation and after shut-down has to be simulated. The European Activation System (EASY), consisting of the inventory code FISPACT and the activation library EAF, is the world wide reference system for these calculations. The activation of the fusion reactor materials, as well as the EASY system have to be tested experimentally. In the present work several samples of materials from the European fusion technology program were irradiated in neutron fields of DT neutron generators at TU Dresden and at Sergiev Posad near Moscow. The radioactivity following irradiation was determined several times during decay by ?×-spectroscopy. The results are analysed with EASY and ratios of the calculated-to-experimental activation (C/E) are determined, to find limits for the experimental validation of EASY. For the future improvement of EASY integral cross sections are obtained from these C/E and discussed in connection with the EAF data, energy differential measurements from the EXFOR System of the International Atomic Energy Agency (IAEA), other energy integral measurements and evaluated data from libraries in the JANIS system of the Nuclear Energy Agency (NEA). The investigated materials of the present work are Tungsten, Yttrium, CuCrZr and Lead. Tungsten is the preferred material for the divertor plates of fusion devices an a constituent of reduced activation structural materials. Yttrium is used in the ODS steels, which are candidate materials for the first wall and blanket structure of. The characteristic feature of ODS steels is to introduce Y2O3 oxide particles into structural materials like EUROFER to improve the high-temperature strength and to maintain superior radiation resistance. CuCrZr alloys are used as a heat sink in the first wall of the blanket and in the divertor. The CuCrZr alloys contain impurities in consequence of the production technology, which can have an influence on the activation performance and thus have to be known accurately. In this work the neutron activation analysis has proved to be an appropriate instrument to measure the amount of some special impurities. Lead acts as a neutron multiplier and coolant in breeding blanket concepts such as the European Test Blanket Modules (TBM) with liquid Pb-17Li. Due to some large discrepancies between the measured activities and those calculated with EASY for tungsten, these cross sections are analysed with recent models of the nuclear reaction mechanisms. The sensitivity of the obtained cross sections with respect to different reaction models and parameters is investigated and limits for new evaluations are obtained with respect to the experimental results. / Die von Neutronen induzierten Aktivitäten in den Materialien zukünftiger Fusionsreaktoren stellen einen zentralen Punkt in der Forschung zur Sicherheit und Umweltverträglichkeit der gesteuerten Kernfusion dar. Für die Konstruktion und den Betrieb von Fusionsreaktoren, wie den Internationalen Thermonuklearen Experimental-Reaktor ITER oder Demonstrationskraftwerke wie DEMO, werden Simulationsrechnungen zum Aktivierungsverhalten der Materialien während des Betriebs und nach Abschalten des Reaktor durchgeführt. Das European Activation System EASY, bestehend aus dem Inventarcode FISPACT und der Datenbibliothek EAF, ist dabei weltweit das Referenzinstrument für derartige Rechnungen. Sowohl das Programmpaket als auch das Aktivierungsverhalten der im Fusionsreaktor verwendeten Materialien müssen experimentell getestet werden. Im Rahmen dieser Arbeit wurden zu diesem Zweck Proben von Materialien aus dem europäischen Fusionstechnologieprogramm in Neutronenfeldern der DT-Neutronengeneratoren der TU Dresden, bzw. an SNEG-13 im russischen Sergiev Posad bestrahlt. Die entstehende Radioaktivität wurde im Anschluss an die Bestrahlung zu verschiedenen Abklingzeiten mittels Gammaspektroskopie bestimmt. Die gemessenen Aktivitäten individueller Nuklide werden mit EASY analysiert und die Verhältnisse von gemessener Aktivität zu berechneter (C/E) werden für die einzelnen Aktivitäten bestimmt. Damit werden die Grenzen für die experimentelle Bestätigung der EASY-Berechungen ermittelt. Zur zukünftigen Verbesserung von EASY werden aus den C/E experimentelle Eingruppenwirkungsquerschnitte ermittelt, die im Kontext der EAF-Daten, energiedifferentieller Messungen aus dem EXFOR System der International Atomic Energy Agency (IAEA), vorangegangener energieintegraler Experimente und eingeschätzter Bibliotheksdaten aus dem JANIS System der Nuclear Energy Agency (NEA) diskutiert werden. Bei den untersuchten Materialien handelt es sich um Wolfram, Yttrium, CuCrZr und Blei. Wolfram ist ein bevorzugtes Material für den Divertor des Fusionsreaktors und zudem Bestandteil gering aktivierbarer Strukturmaterialien. Yttrium wird als Zusatz in den so genannten ODS Stählen verwendet, die in der ersten Wand und im Blanket eingesetzt werden. Diese entstehen aus Strukturmaterialien wie dem europäischen EUROFER, die bereits früher auf ihr Aktivierungsverhalten untersucht wurden, durch Hinzufügen von Y2O3-Partikeln, wodurch sie bei höheren Temperaturen und Neutronenflüssen einsetzbar werden. CuCrZr wird als Wärmeleiter in der ersten Wand des Blankets und im Divertor eingesetzt. Als Legierung ist CuCrZr mit technologisch bedingten Verunreinigungen versetzt, die sich auf das Aktivierungsverhalten auswirken können und deshalb genau bekannt sein müssen. Die Neutronenaktivierung hat sich dabei im Rahmen dieser Arbeit ebenfalls als geeignetes Mittel erwiesen. Blei agiert als Neutronenmultiplikator und Kühlmittel in Brutblanketkonzepten wie dem europäischen Test Blanket Module (TBM) das flüssiges Pb-17Li verwendet. Infolge der deutlichen Diskrepanzen zwischen der experimentellen und der mit EASY berechneten Aktivitäten bei Wolfram wird eine Analyse der Wirkungsquerschnitte mit Hilfe aktueller Modelle zum Mechanismus von Kernreaktionen vorgenommen. Dabei wird die Sensitivität der ermittelten Wirkungsquerschnitte auf verschiedene Reaktionsmodelle und Parameter getestet und ein Rahmen für Neueinschätzungen der Daten unter Berücksichtigung experimenteller Ergebnisse ermittelt.
|
13 |
Messung und Analyse von neutroneninduzierten Aktivitäten in Materialien zukünftiger KernfusionsreaktorenEichin, Randy 07 December 2004 (has links)
The radioactivity induced by neutrons in the materials of future fusion devices represents a central topic of safety- and environmental-related investigations. For the design and operation of future fusion devices, like the International Experimental Thermonuclear Reactor ITER or power plants like DEMO, the activation performance of the materials during operation and after shut-down has to be simulated. The European Activation System (EASY), consisting of the inventory code FISPACT and the activation library EAF, is the world wide reference system for these calculations. The activation of the fusion reactor materials, as well as the EASY system have to be tested experimentally. In the present work several samples of materials from the European fusion technology program were irradiated in neutron fields of DT neutron generators at TU Dresden and at Sergiev Posad near Moscow. The radioactivity following irradiation was determined several times during decay by ?×-spectroscopy. The results are analysed with EASY and ratios of the calculated-to-experimental activation (C/E) are determined, to find limits for the experimental validation of EASY. For the future improvement of EASY integral cross sections are obtained from these C/E and discussed in connection with the EAF data, energy differential measurements from the EXFOR System of the International Atomic Energy Agency (IAEA), other energy integral measurements and evaluated data from libraries in the JANIS system of the Nuclear Energy Agency (NEA). The investigated materials of the present work are Tungsten, Yttrium, CuCrZr and Lead. Tungsten is the preferred material for the divertor plates of fusion devices an a constituent of reduced activation structural materials. Yttrium is used in the ODS steels, which are candidate materials for the first wall and blanket structure of. The characteristic feature of ODS steels is to introduce Y2O3 oxide particles into structural materials like EUROFER to improve the high-temperature strength and to maintain superior radiation resistance. CuCrZr alloys are used as a heat sink in the first wall of the blanket and in the divertor. The CuCrZr alloys contain impurities in consequence of the production technology, which can have an influence on the activation performance and thus have to be known accurately. In this work the neutron activation analysis has proved to be an appropriate instrument to measure the amount of some special impurities. Lead acts as a neutron multiplier and coolant in breeding blanket concepts such as the European Test Blanket Modules (TBM) with liquid Pb-17Li. Due to some large discrepancies between the measured activities and those calculated with EASY for tungsten, these cross sections are analysed with recent models of the nuclear reaction mechanisms. The sensitivity of the obtained cross sections with respect to different reaction models and parameters is investigated and limits for new evaluations are obtained with respect to the experimental results. / Die von Neutronen induzierten Aktivitäten in den Materialien zukünftiger Fusionsreaktoren stellen einen zentralen Punkt in der Forschung zur Sicherheit und Umweltverträglichkeit der gesteuerten Kernfusion dar. Für die Konstruktion und den Betrieb von Fusionsreaktoren, wie den Internationalen Thermonuklearen Experimental-Reaktor ITER oder Demonstrationskraftwerke wie DEMO, werden Simulationsrechnungen zum Aktivierungsverhalten der Materialien während des Betriebs und nach Abschalten des Reaktor durchgeführt. Das European Activation System EASY, bestehend aus dem Inventarcode FISPACT und der Datenbibliothek EAF, ist dabei weltweit das Referenzinstrument für derartige Rechnungen. Sowohl das Programmpaket als auch das Aktivierungsverhalten der im Fusionsreaktor verwendeten Materialien müssen experimentell getestet werden. Im Rahmen dieser Arbeit wurden zu diesem Zweck Proben von Materialien aus dem europäischen Fusionstechnologieprogramm in Neutronenfeldern der DT-Neutronengeneratoren der TU Dresden, bzw. an SNEG-13 im russischen Sergiev Posad bestrahlt. Die entstehende Radioaktivität wurde im Anschluss an die Bestrahlung zu verschiedenen Abklingzeiten mittels Gammaspektroskopie bestimmt. Die gemessenen Aktivitäten individueller Nuklide werden mit EASY analysiert und die Verhältnisse von gemessener Aktivität zu berechneter (C/E) werden für die einzelnen Aktivitäten bestimmt. Damit werden die Grenzen für die experimentelle Bestätigung der EASY-Berechungen ermittelt. Zur zukünftigen Verbesserung von EASY werden aus den C/E experimentelle Eingruppenwirkungsquerschnitte ermittelt, die im Kontext der EAF-Daten, energiedifferentieller Messungen aus dem EXFOR System der International Atomic Energy Agency (IAEA), vorangegangener energieintegraler Experimente und eingeschätzter Bibliotheksdaten aus dem JANIS System der Nuclear Energy Agency (NEA) diskutiert werden. Bei den untersuchten Materialien handelt es sich um Wolfram, Yttrium, CuCrZr und Blei. Wolfram ist ein bevorzugtes Material für den Divertor des Fusionsreaktors und zudem Bestandteil gering aktivierbarer Strukturmaterialien. Yttrium wird als Zusatz in den so genannten ODS Stählen verwendet, die in der ersten Wand und im Blanket eingesetzt werden. Diese entstehen aus Strukturmaterialien wie dem europäischen EUROFER, die bereits früher auf ihr Aktivierungsverhalten untersucht wurden, durch Hinzufügen von Y2O3-Partikeln, wodurch sie bei höheren Temperaturen und Neutronenflüssen einsetzbar werden. CuCrZr wird als Wärmeleiter in der ersten Wand des Blankets und im Divertor eingesetzt. Als Legierung ist CuCrZr mit technologisch bedingten Verunreinigungen versetzt, die sich auf das Aktivierungsverhalten auswirken können und deshalb genau bekannt sein müssen. Die Neutronenaktivierung hat sich dabei im Rahmen dieser Arbeit ebenfalls als geeignetes Mittel erwiesen. Blei agiert als Neutronenmultiplikator und Kühlmittel in Brutblanketkonzepten wie dem europäischen Test Blanket Module (TBM) das flüssiges Pb-17Li verwendet. Infolge der deutlichen Diskrepanzen zwischen der experimentellen und der mit EASY berechneten Aktivitäten bei Wolfram wird eine Analyse der Wirkungsquerschnitte mit Hilfe aktueller Modelle zum Mechanismus von Kernreaktionen vorgenommen. Dabei wird die Sensitivität der ermittelten Wirkungsquerschnitte auf verschiedene Reaktionsmodelle und Parameter getestet und ein Rahmen für Neueinschätzungen der Daten unter Berücksichtigung experimenteller Ergebnisse ermittelt.
|
14 |
Particles with Negative Mass: Production, Properties and Applications for Nuclear Fusion and Self-AccelerationTajmar, Martin, Assis, A. K. T. 21 July 2015 (has links) (PDF)
Some experiments have indicated the possible existence of par ticles with a negative inertial mass. It is shown under which condit ions Weber’s electrodynamics gives rise to this effect. Some specific experiments related to this aspect of Weber’s law are described. Two particles equ ally electrified with charges of the same sign would then move toward one an other if they had negative effective inertial masses. A new concept for nuclear fusion is presented based on the possibility of creating a negative effective inertial mass for ions. It is then considered some properties of the inertial dipole, that is, a system composed by a pair of particles in which one particle has a positive effective inertial mass while the other particle has a negative effective inertial mass. The possible utilization of the inertialdipole as a propulsion system is briefly discussed.
|
15 |
Particles with Negative Mass: Production, Properties and Applications for Nuclear Fusion and Self-AccelerationTajmar, Martin, Assis, A. K. T. 21 July 2015 (has links)
Some experiments have indicated the possible existence of par ticles with a negative inertial mass. It is shown under which condit ions Weber’s electrodynamics gives rise to this effect. Some specific experiments related to this aspect of Weber’s law are described. Two particles equ ally electrified with charges of the same sign would then move toward one an other if they had negative effective inertial masses. A new concept for nuclear fusion is presented based on the possibility of creating a negative effective inertial mass for ions. It is then considered some properties of the inertial dipole, that is, a system composed by a pair of particles in which one particle has a positive effective inertial mass while the other particle has a negative effective inertial mass. The possible utilization of the inertialdipole as a propulsion system is briefly discussed.
|
16 |
Aufbau und Inbetriebnahme einer PhotoneutronenquelleGreschner, Martin 18 July 2013 (has links) (PDF)
Das Institut für Kern- und Teilchenphysik (IKTP) der Technischen Universität Dresden (TUD) hat im Forschungszentrum Dresden-Rossendorf (FZD) ein Labor zur Untersuchung von neutroneninduzierten kernphysikalischen Prozessen in Materialien, die für die Fusionsforschung relevant sind, aufgebaut. Das Labor ist ausgestattet mit drei intensiven Neutronenquellen: einer 14 MeV-Neutronenquelle, einer weißen kontinuierlichen Photoneutronen-Quelle, die näher in dieser Arbeit beschrieben wird, und einer gepulsten Photoneutronen-Quelle, die vom FZD inKooperation mit der TUD aufgebaut wurde. Die kontinuierliche Photoneutronen-Quelle basiert auf einem Radiator aus Wolfram (engl. Tungsten Photoneutron Source (TPNS)). TPNS nutzt die im ELBE-Beschleuniger (Elektronen Linearbeschleuniger für Strahlen hoher Brillianz und niedriger Emittanz (ELBE)) beschleunigten Elektronen zur Neutronenerzeugung.
Der Prozess läuft über Zwischenschritte ab, indem bei der Abbremsung der Elektronen im Radiator Bremsstrahlungsphotonen entstehen, die anschließend Neutronen durch (γ,xn)-Reaktionen erzeugen. Das Neutronenspektrum der TPNS kann mittels Moderatoren so modifiziert werden, dass es dem in der ersten Wand im Fusionsreaktor entspricht. Dies ermöglicht Untersuchungen mit einem für einen Fusionsreaktor typischen Neutronenspektrum. Die technische Verwirklichung des Projektes, die Inbetriebnahme der Anlage sowie die Durchführung der ersten Experimente zur Neutronenerzeugung ist Inhalt dieser Arbeit. Die Neutronenquelle ist insbesondere für qualitative Untersuchungen in der Fusionsneutronik bestimmt. Der Fusionsreaktor produziert, im Vergleich zu einem Spaltungsreaktor, keine langlebigen Isotope als Abfall. Die wesentliche Aktivität des Reaktors ist in Konstruktionsmaterialien akkumuliert. Durch sorgfältige Auswahl der Materialien kann man die Aktivierung minimieren und damit künftig wesentlich weniger radioaktives Inventar produzieren als in Spaltreaktoren.
Ziel der kernphysikalischen Untersuchungen ist, solche Materialien für den Aufbau eines Fusionsreaktors zu erforschen, die niedrigaktivierbar sind, das heißt wenig Aktivität akkumulieren können, und eine Halbwertzeit von einigen Jahren haben. Es ist das Ziel, alle Konstruktionsmaterialien nach 100 Jahren wiederverwenden zu können. Die Neutronenflussdichte einer Photoneutronenquelle ist einige Größenordnungen höher als die, die mittels eines DT-Neutronengenerators mit anschließender Moderation erreicht werden kann.
Die gesamte Arbeit ist in drei Teile geteilt. Der erste Teil leitet in die Problematik der Energieversorgung ein und zeigt die Kernfusion als eine vielversprechende Energiequelle der naher Zukunft auf. Das Neutronenlabor der TUD, in dem die TPNS aufgebaut ist, wird ebenfalls kurz vorgestellt. Der zweite Teil befasst sich mit der TPNS selbst, mit ihrem physikalischen Entwurf, der Konstruktion und dem Aufbau bis zu der Inbetriebnahme sowie dem ersten Experiment an der TPNS. Der letzte, dritte Teil ist die Zusammenfassung der vorhandenen Ergebnisse und gibt einen Ausblick auf die zukünftige Vorhaben. / The Institute for Nuclear and Particle Physics at the Technische Universität Dresden (TUD) has build a neutron physics laboratory at Forschungszentrum Dresden-Rossendorf (FZD) to investigate nuclear processes in materials. The experiments are focused on materials relevant to nuclear fusion. The laboratory is equipped with three intensive neutron sources. The first is a 14 MeV monochromatic neutron source based on the DT reaction (owned by TUD); the other two are continuous and pulsed white photoneutron sources based on (γ,xn) reactions. One pulsed photoneutron source is realized by FZD in cooperation with the TUD. The continuous photoneutron source utilises a tungsten radiator (Tungsten Photoneutron Source) to produce neutrons with a wide energy spectra. The TPNS uses the ELBE-accelerator as a source of electrons for neutron production.
This process involves an intermediate step, where slowed down electrons produce bremsstrahlung (γ -rays) absorbed by tungsten nuclei. Consecutively, the excited nuclei emit neutrons. The neutron flux of the photoneutron source is five orders of magnitude higher than the flux of the DT neutron sources with appropriate moderation. The neutron spectrum of TPNS can be modified by moderators, in such a way that the spectrum is comparable to that in the first wall of a Tokamak-Reactor. That allows investigations with the typical neutron spectrum of the fusion reactor.
The technical solution, initial operation and the first experiment are described in this work. The neutron source is, in particular, dedicated to quantitative investigations in fusion neutronics. A fusion reactor produces radioactive isotopes as a nuclear waste. The main activity is accumulated in the structural materials. Carefully selected structural materials can significantly minimize the activity and thereby the amount of nuclear waste. The purpose of this project is to find constructional materials with half-lives shorter than several years, which can be recycled after about 100 years.
The work is divided into three parts. The first part is dedicated to the energy supply problem and nuclear fusion is addressed as a promising solution of the near future. The neutron laboratory housing the TPNS is also briefly described. The second part deals with the tungsten photoneutron source, the design, construction, operation and the first experiments for neutron production. The third part summarises results and presents an outlook for future experiments with the TPNS.
|
17 |
Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method / Messung der Neutronenflussspektren in einem Wolfram-Benchmark mit der Multifolien-NeutronenaktivierungstechnikNegoita, Cezar Ciprian 16 August 2004 (has links) (PDF)
The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the "tokamak" concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displacements, radiation shielding, power generation and material activation. The flux spectra can be calculated with transport codes, but validating measurements are also required. An important constituent of structural materials and divertor areas of fusion reactors is tungsten. This thesis deals with the measurement of the neutron fluence and neutron energy spectrum in a tungsten assembly by means of multiple foil neutron activation technique. In order to check and qualify the experimental tools and the codes to be used in the tungsten benchmark experiment, test measurements in the D-T and D-D neutron fields of the neutron generator at Technische Universität Dresden were performed. The characteristics of the D-D and D-T reactions, used to produce monoenergetic neutrons, together with the selection of activation reactions suitable for fusion applications and details of the activation measurements are presented. Corrections related to the neutron irradiation process and those to the sample counting process are discussed, too. The neutron fluence and its energy distribution in a tungsten benchmark, irradiated at the Frascati Neutron Generator with 14 MeV neutrons produced by the T(d, n)4He reaction, are then derived from the measurements of the neutron induced γ-ray activity in the foils using the STAYNL unfolding code, based on the linear least-square-errors method, together with the IRDF-90.2 (International Reactor Dosimetry File) cross section library. The differences between the neutron flux spectra measured by means of neutron foil activation and the neutron flux spectra obtained in the same assembly, making use of an NE213 liquid-scintillation spectrometer were studied. The comparison of measured neutron spectra with the spectra calculated with the MCNP-4B (Monte Carlo neutron and photon transport) code, which allows a crucial test of the evaluated nuclear data used in fusion reactor design, is discussed, too. In conclusion, this thesis shows the applicability of the neutron foil activation technique for the measurement of neutron flux spectra inside a thick tungsten assembly irradiated with 14 MeV from a D-T generator. / Die Konstruktion von Fusionsreaktoren wie ITER (International Thermonuclear Experimental Reactor), der ein experimenteller Fusionsreaktor ist und auf dem "Tokamak"-Konzept beruht, basiert unter neutronenphysikalischen Gesichtspunkten auf den Ergebnissen von umfangreichen Simulationsrechnungen. Diese setzen die Kenntnis der Spektren des Neutronen- und Photonenflusses voraus die besonders wichtig ist, weil sie, die möglichen Antworten der ganzen Struktur auf physikalische Prozesse vorauszuberechnen erlaubt wie z.B.: Heizen durch nukleare Prozesse, Tritium-Brüten, Atomverschiebung, Abschirmung von Strahlung, Leistungserzeugung und Materialaktivierung. Die Flußspektren können mittels Transportcodes berechnet werden, aber es werden auch Messungen zu ihrer Bestätigung benötigt. Ein wichtiger Bestandteil des Strukturmaterials und der Divertor-Flächen der Fusionsreaktoren ist Wolfram. Diese Dissertation behandelt die Messungen der Neutronspektren und ?fluenz in einer Wolfram-Anordnung mittels der Multifolien-Neutronenaktivierungstechnik. Um die anzuwendenden experimentellen Geräte und die Codes, die im Wolfram-Benchmark-Experiment eingesetzt werden, zu überprüfen und zu bestimmen, wurden Testmessungen in den D-T und D-D Neutronenfeldern des Neutronengenerator der Technischen Universität Dresden durchgeführt. Die Eigenschaften der D-T und D-D Reaktionen, die für die Erzeugung von monoenergetischen Neutronen verwendet werden, sowie die Auswahl der Aktivierungsreaktionen, die für Fusionsanwendungen geeignet sind und die Aktivierungsmessung werden detailliert vorgestellt. Korrekturen, die sich auf den Neutronen-Bestrahlungsprozess und auf den Probenzählungsprozess beziehen, werden ebenfalls besprochen. Die Neutronenfluenz und ihre Energieverteilung in einem Wolfram-Benchmark, bestrahlt am Frascati Neutronen Generator mit 14 MeV-Neutronen aus der T(d, n)4He Reaktion, werden aus den Messungen der γ-Strahlenaktivität, die von Neutronen in den Folien induziert ist, durch den STAYNL Entfaltungscode, der auf der Methode der kleinsten Fehlerquadrate basiert, zusammen mit der IRDF-90.2 Wirkungsquerschnitt-Bibliothek abgeleitet. Die Unterschiede zwischen den Neutronenflußspektren, die mit Hilfe der Multifolien-Neutronenaktivierung ermittelt wurden, und den Neutronenflußspektren, gemessen im selben Aufbau mit einem NE-213 Flüssigszintillator, wurden untersucht. Die gemessenen Neutronenspektren werden den aus MCNP-4B Rechnungen (Monte Carlo neutron and photon transport) ermittelten Spektren gegenüber gestellt. Der Vergleich stellt einen wichtigen Test der evaluierten Kerndaten für Fusionsreaktorkonzepte dar. Zusammenfassend zeigt diese Arbeit die Anwendbarkeit der Multifolien-Neutronenaktivierungstechnik bei Messungen der Neutronenflussspektren innerhalb eines massiven Wolframblocks bei Bestrahlung mit schnellen Neutronen aus D-T Generatoren.
|
18 |
Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation methodNegoita, Cezar Ciprian 19 August 2004 (has links)
The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the "tokamak" concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displacements, radiation shielding, power generation and material activation. The flux spectra can be calculated with transport codes, but validating measurements are also required. An important constituent of structural materials and divertor areas of fusion reactors is tungsten. This thesis deals with the measurement of the neutron fluence and neutron energy spectrum in a tungsten assembly by means of multiple foil neutron activation technique. In order to check and qualify the experimental tools and the codes to be used in the tungsten benchmark experiment, test measurements in the D-T and D-D neutron fields of the neutron generator at Technische Universität Dresden were performed. The characteristics of the D-D and D-T reactions, used to produce monoenergetic neutrons, together with the selection of activation reactions suitable for fusion applications and details of the activation measurements are presented. Corrections related to the neutron irradiation process and those to the sample counting process are discussed, too. The neutron fluence and its energy distribution in a tungsten benchmark, irradiated at the Frascati Neutron Generator with 14 MeV neutrons produced by the T(d, n)4He reaction, are then derived from the measurements of the neutron induced γ-ray activity in the foils using the STAYNL unfolding code, based on the linear least-square-errors method, together with the IRDF-90.2 (International Reactor Dosimetry File) cross section library. The differences between the neutron flux spectra measured by means of neutron foil activation and the neutron flux spectra obtained in the same assembly, making use of an NE213 liquid-scintillation spectrometer were studied. The comparison of measured neutron spectra with the spectra calculated with the MCNP-4B (Monte Carlo neutron and photon transport) code, which allows a crucial test of the evaluated nuclear data used in fusion reactor design, is discussed, too. In conclusion, this thesis shows the applicability of the neutron foil activation technique for the measurement of neutron flux spectra inside a thick tungsten assembly irradiated with 14 MeV from a D-T generator. / Die Konstruktion von Fusionsreaktoren wie ITER (International Thermonuclear Experimental Reactor), der ein experimenteller Fusionsreaktor ist und auf dem "Tokamak"-Konzept beruht, basiert unter neutronenphysikalischen Gesichtspunkten auf den Ergebnissen von umfangreichen Simulationsrechnungen. Diese setzen die Kenntnis der Spektren des Neutronen- und Photonenflusses voraus die besonders wichtig ist, weil sie, die möglichen Antworten der ganzen Struktur auf physikalische Prozesse vorauszuberechnen erlaubt wie z.B.: Heizen durch nukleare Prozesse, Tritium-Brüten, Atomverschiebung, Abschirmung von Strahlung, Leistungserzeugung und Materialaktivierung. Die Flußspektren können mittels Transportcodes berechnet werden, aber es werden auch Messungen zu ihrer Bestätigung benötigt. Ein wichtiger Bestandteil des Strukturmaterials und der Divertor-Flächen der Fusionsreaktoren ist Wolfram. Diese Dissertation behandelt die Messungen der Neutronspektren und ?fluenz in einer Wolfram-Anordnung mittels der Multifolien-Neutronenaktivierungstechnik. Um die anzuwendenden experimentellen Geräte und die Codes, die im Wolfram-Benchmark-Experiment eingesetzt werden, zu überprüfen und zu bestimmen, wurden Testmessungen in den D-T und D-D Neutronenfeldern des Neutronengenerator der Technischen Universität Dresden durchgeführt. Die Eigenschaften der D-T und D-D Reaktionen, die für die Erzeugung von monoenergetischen Neutronen verwendet werden, sowie die Auswahl der Aktivierungsreaktionen, die für Fusionsanwendungen geeignet sind und die Aktivierungsmessung werden detailliert vorgestellt. Korrekturen, die sich auf den Neutronen-Bestrahlungsprozess und auf den Probenzählungsprozess beziehen, werden ebenfalls besprochen. Die Neutronenfluenz und ihre Energieverteilung in einem Wolfram-Benchmark, bestrahlt am Frascati Neutronen Generator mit 14 MeV-Neutronen aus der T(d, n)4He Reaktion, werden aus den Messungen der γ-Strahlenaktivität, die von Neutronen in den Folien induziert ist, durch den STAYNL Entfaltungscode, der auf der Methode der kleinsten Fehlerquadrate basiert, zusammen mit der IRDF-90.2 Wirkungsquerschnitt-Bibliothek abgeleitet. Die Unterschiede zwischen den Neutronenflußspektren, die mit Hilfe der Multifolien-Neutronenaktivierung ermittelt wurden, und den Neutronenflußspektren, gemessen im selben Aufbau mit einem NE-213 Flüssigszintillator, wurden untersucht. Die gemessenen Neutronenspektren werden den aus MCNP-4B Rechnungen (Monte Carlo neutron and photon transport) ermittelten Spektren gegenüber gestellt. Der Vergleich stellt einen wichtigen Test der evaluierten Kerndaten für Fusionsreaktorkonzepte dar. Zusammenfassend zeigt diese Arbeit die Anwendbarkeit der Multifolien-Neutronenaktivierungstechnik bei Messungen der Neutronenflussspektren innerhalb eines massiven Wolframblocks bei Bestrahlung mit schnellen Neutronen aus D-T Generatoren.
|
19 |
Aufbau und Inbetriebnahme einer PhotoneutronenquelleGreschner, Martin 01 July 2013 (has links)
Das Institut für Kern- und Teilchenphysik (IKTP) der Technischen Universität Dresden (TUD) hat im Forschungszentrum Dresden-Rossendorf (FZD) ein Labor zur Untersuchung von neutroneninduzierten kernphysikalischen Prozessen in Materialien, die für die Fusionsforschung relevant sind, aufgebaut. Das Labor ist ausgestattet mit drei intensiven Neutronenquellen: einer 14 MeV-Neutronenquelle, einer weißen kontinuierlichen Photoneutronen-Quelle, die näher in dieser Arbeit beschrieben wird, und einer gepulsten Photoneutronen-Quelle, die vom FZD inKooperation mit der TUD aufgebaut wurde. Die kontinuierliche Photoneutronen-Quelle basiert auf einem Radiator aus Wolfram (engl. Tungsten Photoneutron Source (TPNS)). TPNS nutzt die im ELBE-Beschleuniger (Elektronen Linearbeschleuniger für Strahlen hoher Brillianz und niedriger Emittanz (ELBE)) beschleunigten Elektronen zur Neutronenerzeugung.
Der Prozess läuft über Zwischenschritte ab, indem bei der Abbremsung der Elektronen im Radiator Bremsstrahlungsphotonen entstehen, die anschließend Neutronen durch (γ,xn)-Reaktionen erzeugen. Das Neutronenspektrum der TPNS kann mittels Moderatoren so modifiziert werden, dass es dem in der ersten Wand im Fusionsreaktor entspricht. Dies ermöglicht Untersuchungen mit einem für einen Fusionsreaktor typischen Neutronenspektrum. Die technische Verwirklichung des Projektes, die Inbetriebnahme der Anlage sowie die Durchführung der ersten Experimente zur Neutronenerzeugung ist Inhalt dieser Arbeit. Die Neutronenquelle ist insbesondere für qualitative Untersuchungen in der Fusionsneutronik bestimmt. Der Fusionsreaktor produziert, im Vergleich zu einem Spaltungsreaktor, keine langlebigen Isotope als Abfall. Die wesentliche Aktivität des Reaktors ist in Konstruktionsmaterialien akkumuliert. Durch sorgfältige Auswahl der Materialien kann man die Aktivierung minimieren und damit künftig wesentlich weniger radioaktives Inventar produzieren als in Spaltreaktoren.
Ziel der kernphysikalischen Untersuchungen ist, solche Materialien für den Aufbau eines Fusionsreaktors zu erforschen, die niedrigaktivierbar sind, das heißt wenig Aktivität akkumulieren können, und eine Halbwertzeit von einigen Jahren haben. Es ist das Ziel, alle Konstruktionsmaterialien nach 100 Jahren wiederverwenden zu können. Die Neutronenflussdichte einer Photoneutronenquelle ist einige Größenordnungen höher als die, die mittels eines DT-Neutronengenerators mit anschließender Moderation erreicht werden kann.
Die gesamte Arbeit ist in drei Teile geteilt. Der erste Teil leitet in die Problematik der Energieversorgung ein und zeigt die Kernfusion als eine vielversprechende Energiequelle der naher Zukunft auf. Das Neutronenlabor der TUD, in dem die TPNS aufgebaut ist, wird ebenfalls kurz vorgestellt. Der zweite Teil befasst sich mit der TPNS selbst, mit ihrem physikalischen Entwurf, der Konstruktion und dem Aufbau bis zu der Inbetriebnahme sowie dem ersten Experiment an der TPNS. Der letzte, dritte Teil ist die Zusammenfassung der vorhandenen Ergebnisse und gibt einen Ausblick auf die zukünftige Vorhaben. / The Institute for Nuclear and Particle Physics at the Technische Universität Dresden (TUD) has build a neutron physics laboratory at Forschungszentrum Dresden-Rossendorf (FZD) to investigate nuclear processes in materials. The experiments are focused on materials relevant to nuclear fusion. The laboratory is equipped with three intensive neutron sources. The first is a 14 MeV monochromatic neutron source based on the DT reaction (owned by TUD); the other two are continuous and pulsed white photoneutron sources based on (γ,xn) reactions. One pulsed photoneutron source is realized by FZD in cooperation with the TUD. The continuous photoneutron source utilises a tungsten radiator (Tungsten Photoneutron Source) to produce neutrons with a wide energy spectra. The TPNS uses the ELBE-accelerator as a source of electrons for neutron production.
This process involves an intermediate step, where slowed down electrons produce bremsstrahlung (γ -rays) absorbed by tungsten nuclei. Consecutively, the excited nuclei emit neutrons. The neutron flux of the photoneutron source is five orders of magnitude higher than the flux of the DT neutron sources with appropriate moderation. The neutron spectrum of TPNS can be modified by moderators, in such a way that the spectrum is comparable to that in the first wall of a Tokamak-Reactor. That allows investigations with the typical neutron spectrum of the fusion reactor.
The technical solution, initial operation and the first experiment are described in this work. The neutron source is, in particular, dedicated to quantitative investigations in fusion neutronics. A fusion reactor produces radioactive isotopes as a nuclear waste. The main activity is accumulated in the structural materials. Carefully selected structural materials can significantly minimize the activity and thereby the amount of nuclear waste. The purpose of this project is to find constructional materials with half-lives shorter than several years, which can be recycled after about 100 years.
The work is divided into three parts. The first part is dedicated to the energy supply problem and nuclear fusion is addressed as a promising solution of the near future. The neutron laboratory housing the TPNS is also briefly described. The second part deals with the tungsten photoneutron source, the design, construction, operation and the first experiments for neutron production. The third part summarises results and presents an outlook for future experiments with the TPNS.
|
Page generated in 0.0841 seconds