• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ramverk för att motverka algoritmisk snedvridning

Engman, Clara, Skärdin, Linnea January 2019 (has links)
Användningen av artificiell intelligens (AI) har tredubblats på ett år och och anses av vissa vara det viktigaste paradigmskiftet i teknikhistorien. Den rådande AI-kapplöpningen riskerar att underminera frågor om etik och hållbarhet, vilket kan ge förödande konsekvenser. Artificiell intelligens har i flera fall visat sig avbilda, och till och med förstärka, befintliga snedvridningar i samhället i form av fördomar och värderingar. Detta fenomen kallas algoritmisk snedvridning (algorithmic bias). Denna studie syftar till att formulera ett ramverk för att minimera risken att algoritmisk snedvridning uppstår i AI-projekt och att anpassa det efter ett medelstort konsultbolag. Studiens första del är en litteraturstudie på snedvridningar - både ur ett kognitivt och ur ett algoritmiskt perspektiv. Den andra delen är en undersökning av existerande rekommendationer från EU, AI Sustainability Center, Google och Facebook. Den tredje och sista delen består av ett empiriskt bidrag i form av en kvalitativ intervjustudie, som har använts för att justera ett initialt ramverk i en iterativ process. / In the use of the third generation Artificial Intelligence (AI) for the development of products and services, there are many hidden risks that may be difficult to detect at an early stage. One of the risks with the use of machine learning algorithms is algorithmic bias which, in simplified terms, means that implicit prejudices and values are comprised in the implementation of AI. A well-known case is Google’s image recognition algorithm, which identified black people as gorillas. The purpose of this master thesis is to create a framework with the aim to minimise the risk of algorithmic bias in AI development projects. To succeed with this task, the project has been divided into three parts. The first part is a literature study of the phenomenon bias, both from a human perspective as well as from an algorithmic bias perspective. The second part is an investigation of existing frameworks and recommendations published by Facebook, Google, AI Sustainability Center and the EU. The third part consists in an empirical contribution in the form of a qualitative interview study which has been used to create and adapt an initial general framework. The framework was created using an iterative methodology where two whole iterations were performed. The first version of the framework was created using insights from the literature studies as well as from existing recommendations. To validate the first version, the framework was presented for one of Cybercom’s customers in the private sector, who also got the possibility to ask questions and give feedback regarding the framework. The second version of the framework was created using results from the qualitative interview studies with machine learning experts at Cybercom. As a validation of the applicability of the framework on real projects and customers, a second qualitative interview study was performed together with Sida - one of Cybercom’s customers in the public sector. Since the framework was formed in a circular process, the second version of the framework should not be treated as constant or complete. The interview study at Sida is considered the beginning of a third iteration, which in future studies could be further developed.
2

Artificiell intelligens och gender bias : En studie av samband mellan artificiell intelligens, gender bias och könsdiskriminering / Addressing Gender Bias in Artificial Intelligence

Lycken, Hanna January 2019 (has links)
AI spås få lika stor påverkan på samhället som elektricitet haft och avancemangen inom till exempel maskininlärning och neurala nätverk har tagit AI in i sektorer som rättsväsende, rekrytering och hälso- och sjukvård. Men AI-system är, precis som människor, känsliga för olika typer av snedvridningar, vilket kan leda till orättvisa beslut. En alarmerande mängd studier och rapporter visar att AI i flera fall speglar, sprider och förstärker befintliga snedvridningar i samhället i form av fördomar och värderingar vad gäller könsstereotyper och könsdiskriminering. Algoritmer som används i bildigenkänning baserar sina beslut på stereotyper om vad som är manligt och kvinnligt, röstigenkänning är mer trolig att korrekt känna igen manliga röster jämfört med kvinnliga röster och röstassistenter som Microsoft:s Cortona eller Apple:s Siri förstärker befintlig könsdiskriminering i samhällen. Syftet med denna studie är att undersöka hur könsdiskriminering kan uppstå i AI-system generellt, hur relationen mellan gender bias och AI-system ser ut samt hur ett företag som arbetar med utveckling av AI resonerar kring relationen mellan gender bias och AI-utveckling. Studiens syfte uppfylls genom en litteraturgenomgång samt djupintervjuer med nyckelpersoner som på olika sätt arbetar med AI-utveckling på KPMG. Resultaten visar att bias i allmänhet och gender bias i synnerhet finns närvarande i alla steg i utvecklingen av AI och kan uppstå på grund av en mängd olika faktorer, inklusive men inte begränsat till mångfald i utvecklingsteamen, utformningen av algoritmer och beslut relaterade till hur data samlas in, kodas, eller används för att träna algoritmer. De lösningar som föreslås handlar dels om att adressera respektive orsaksfaktor som identifierats, men även att se problemet med gender bias och könsdiskriminering i AI-system från ett helhetsperspektiv. Essensen av resultaten är att det inte räcker att ändra någon av parametrarna om inte systemets struktur samtidigt ändras. / Recent advances in, for example, machine learning and neural networks have taken artificial intelligence into disciplines such as justice, recruitment and health care. As in all fields subject to AI, correct decisions are crucial and there is no room for discriminatory conclusions. However, AI-systems are, just like humans, subject to various types of distortions, which can lead to unfair decisions. An alarming number of studies and reports show that AI in many cases reflects and reinforces existing gender bias in society. Algorithms used in image recognition base their decisions on character stereotypes of male and female. Voice recognition is more likely to correctly recognize male voices compared to female voices, and earlier 2019 the United Nations released a study showing that voice assistants, such as Microsoft's Cortona or Apple's Siri, reinforce existing gender bias. The purpose of this study is to investigate how gender discrimination can appear in AI-systems, and what constitutes the relationship between gender bias, gender discrimination and AI-systems. Furthermore it addresses how a company that works with the development of AI reason concerning the relationship between gender bias, gender discrimination and AI development. The study contains a thorough literature review, as well as in-depth interviews with key persons working with various aspects of AI development at KPMG.  The results show that bias in general, and gender bias in particular, are present at all stages of AI development. It can occur due to a variety of factors, including but not limited to the lack of diversity in the workforce, the design of algorithms and the decisions related to how data is collected, encoded and used to train algorithms. The solutions proposed are partly about addressing the identified factors, but also about looking at the problem from a holistic perspective. The significance of seeing and understanding the links between gender bias in society and gender bias in AI-systems, as well as reconsidering how each factor depends on and correlates with other ones, is emphasized. The essence of the results is that it is not enough to alter any of the parameters unless the structure of the system is changed as well.

Page generated in 0.1083 seconds