Spelling suggestions: "subject:"kondensat"" "subject:"kondensation""
1 |
Quantum Condensates and Topological Bosons in Coupled Light-Matter ExcitationsJanot, Alexander 16 March 2016 (has links) (PDF)
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons.
In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments.
In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
|
2 |
Quantum Condensates and Topological Bosons in Coupled Light-Matter ExcitationsJanot, Alexander 29 February 2016 (has links)
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons.
In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments.
In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
|
3 |
In-Medium QCD Sum Rules for omega Meson, Nucleon and D Meson / QCD-Summenregeln für im Medium modifizierte omega-Mesonen, Nukleonen und D-MesonenThomas, Ronny 29 January 2009 (has links) (PDF)
The modifications of hadronic properties caused by an ambient nuclear medium are investigated within the scope of QCD sum rules. This is exemplified for the cases of the omega meson, the nucleon and the D meson. By virtue of the sum rules, integrated spectral densities of these hadrons are linked to properties of the QCD ground state, quantified in condensates. For the cases of the omega meson and the nucleon it is discussed how the sum rules allow a restriction of the parameter range of poorly known four-quark condensates by a comparison of experimental and theoretical knowledge. The catalog of independent four-quark condensates is covered and relations among these condensates are revealed. The behavior of four-quark condensates under the chiral symmetry group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined. In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners are investigated. Finally, the effects of an ambient nuclear medium on the D meson are discussed and relevant condensates are identified. / Die Veränderungen von Hadroneneigenschaften durch ein umgebendes nukleares Medium (Kernmaterie) werden mit der Methode der QCD-Summenregeln untersucht. Dies wird am Beispiel des omega-Mesons, des Nukleons und des D-Mesons vorgeführt. Durch die Summenregeln werden integrierte Spektraldichten dieser Hadronen in Beziehung zu Eigenschaften des QCD-Grundzustandes, quantifiziert in Kondensaten, gesetzt. Diskutiert wird am Beispiel des omega-Mesons und des Nukleons, wie diese Summenregeln eine Einschränkung des Parameterbereiches von wenig bekannten Vierquark-Kondensaten durch Vergleich von experimentellen und theoretischen Erkenntnissen erlauben. Ein Katalog unabhängiger Vierquark-Kondensate wird aufgestellt und Relationen zwischen diesen Kondensaten werden deutlich gemacht. Das Verhalten der Vierquark-Kondensate unter der chiralen Symmetriegruppe und der Zusammenhang mit Ordnungsparametern spontaner chiraler Symmetriebrechung werden behandelt. In dieser Hinsicht werden auch die in Differenzen der Summenregeln chiraler Partner eingehenden QCD-Kondensate untersucht. Schließlich werden die Effekte endlicher Kerndichten beim D-Meson diskutiert und relevante Kondensate identifiziert.
|
4 |
Aspects of Quantum Fluctuations under Time-dependent External InfluencesUhlmann, Michael 18 October 2007 (has links) (PDF)
The vacuum of quantum field theory is not empty space but filled with quantum vacuum fluctuations, which give rise to many intriguing effects. The first part of this Thesis addresses cosmic inflation, where the quantum fluctuations of the inflaton field freeze and get amplified in the expanding universe. Afterwards, we turn our attention towards Bose-Einstein condensates, a laboratory system. Since most of our calculations are performed using a mean-field expansion, we will study the accuracy of a finite-range interaction potential onto such an expansion. Exploiting the universality of quantum fluctuations, several aspects of cosmic inflation will be identified in ballistically expanding Bose-Einstein condensates. The effective action technique for calculating the quantum backreaction will be scrutinized. Finally, we consider dynamic quantum phase transitions in the last part of this Thesis. To this end two specific scenarios will be investigated: firstly, the structure formation during the superfluid to Mott-insulator transition in the Bose-Hubbard model; and secondly, the formation of spin domains as a two-dimensional spin-one Bose gas is quenched from the (polar) paramagnetic to the (planar) ferromagnetic phase. During this quench, the symmetry of the ground state is spontaneously broken and vortices (topological defects) form.
|
5 |
In-Medium QCD Sum Rules for omega Meson, Nucleon and D MesonThomas, Ronny 28 January 2009 (has links)
The modifications of hadronic properties caused by an ambient nuclear medium are investigated within the scope of QCD sum rules. This is exemplified for the cases of the omega meson, the nucleon and the D meson. By virtue of the sum rules, integrated spectral densities of these hadrons are linked to properties of the QCD ground state, quantified in condensates. For the cases of the omega meson and the nucleon it is discussed how the sum rules allow a restriction of the parameter range of poorly known four-quark condensates by a comparison of experimental and theoretical knowledge. The catalog of independent four-quark condensates is covered and relations among these condensates are revealed. The behavior of four-quark condensates under the chiral symmetry group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined. In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners are investigated. Finally, the effects of an ambient nuclear medium on the D meson are discussed and relevant condensates are identified. / Die Veränderungen von Hadroneneigenschaften durch ein umgebendes nukleares Medium (Kernmaterie) werden mit der Methode der QCD-Summenregeln untersucht. Dies wird am Beispiel des omega-Mesons, des Nukleons und des D-Mesons vorgeführt. Durch die Summenregeln werden integrierte Spektraldichten dieser Hadronen in Beziehung zu Eigenschaften des QCD-Grundzustandes, quantifiziert in Kondensaten, gesetzt. Diskutiert wird am Beispiel des omega-Mesons und des Nukleons, wie diese Summenregeln eine Einschränkung des Parameterbereiches von wenig bekannten Vierquark-Kondensaten durch Vergleich von experimentellen und theoretischen Erkenntnissen erlauben. Ein Katalog unabhängiger Vierquark-Kondensate wird aufgestellt und Relationen zwischen diesen Kondensaten werden deutlich gemacht. Das Verhalten der Vierquark-Kondensate unter der chiralen Symmetriegruppe und der Zusammenhang mit Ordnungsparametern spontaner chiraler Symmetriebrechung werden behandelt. In dieser Hinsicht werden auch die in Differenzen der Summenregeln chiraler Partner eingehenden QCD-Kondensate untersucht. Schließlich werden die Effekte endlicher Kerndichten beim D-Meson diskutiert und relevante Kondensate identifiziert.
|
6 |
Aspects of Quantum Fluctuations under Time-dependent External InfluencesUhlmann, Michael 01 October 2007 (has links)
The vacuum of quantum field theory is not empty space but filled with quantum vacuum fluctuations, which give rise to many intriguing effects. The first part of this Thesis addresses cosmic inflation, where the quantum fluctuations of the inflaton field freeze and get amplified in the expanding universe. Afterwards, we turn our attention towards Bose-Einstein condensates, a laboratory system. Since most of our calculations are performed using a mean-field expansion, we will study the accuracy of a finite-range interaction potential onto such an expansion. Exploiting the universality of quantum fluctuations, several aspects of cosmic inflation will be identified in ballistically expanding Bose-Einstein condensates. The effective action technique for calculating the quantum backreaction will be scrutinized. Finally, we consider dynamic quantum phase transitions in the last part of this Thesis. To this end two specific scenarios will be investigated: firstly, the structure formation during the superfluid to Mott-insulator transition in the Bose-Hubbard model; and secondly, the formation of spin domains as a two-dimensional spin-one Bose gas is quenched from the (polar) paramagnetic to the (planar) ferromagnetic phase. During this quench, the symmetry of the ground state is spontaneously broken and vortices (topological defects) form.
|
7 |
Fluctuations in mesoscopic phase-separating systemsOltsch, Florian 14 June 2022 (has links)
For life to thrive, its fundamental units, i.e., the cells, need to reliably and robustly fulfill their function. However, cellular operability is challenged by the appearance of biological noise in the concentration of proteins and other cell components. This noise arises due to spontaneous fluctuations that are inherent to all chemical reactions. For small (mesoscopic) systems, like cells, these fluctuations can be significant and disturb cellular functions.
Cells evolved mechanisms to control and reduce their internal noise. One way to reduce noise in eukaryotic cells is to exploit their internal structure and restrict noise to a particular organelle, thus reducing the noise in the rest of the cell. In recent years it was shown that many cell organelles could be formed by phase separation without the need for a membrane. Thus, it was suggested that phase separation could reduce concentration noise in cells. However, until now, any systematic investigation linking essential aspects of phase separation and concentration noise in cells has been lacking. This motivates the study of fluctuations in mesoscopic phase-separating systems.
This thesis develops a generic theoretical model based on a thermodynamic description of phase separation. We consider a binary mixture that can phase separate into two phases - a liquid droplet surrounded by a phase, which we refer to as continuous phase. We merge this description with methods of stochastic chemical reactions in order to account for the active turnover of phase-separating material and, thus, for the non-equilibrium nature of living cells. The resulting framework allows us to study fluctuations due to chemical turnover and phase separation in and out of equilibrium of phase separation. We use this framework to investigate how a phase-separating system can reduce concentration noise for different reaction networks.
We find that phase separation can reduce concentration noise in active mesoscopic systems like cells in both phases. When turnover dynamics are slow, concentration noise in the dilute phase can be lowered to the level of Poissonian fluctuations. For the dense phase, we find that noise can fall below the Poissonian threshold. When turnover rates become faster such that the system deviates from the equilibrium configuration, the noise reduction by phase separation becomes less efficient. We test our model on experimental data of an engineered protein expressed in living cells. We find a good agreement between the data and theory and demonstrate that phase separation is a viable mechanism for noise reduction in living cells. Thus, phase separation might play an essential part in ensuring the reliable control of cellular functions.
|
8 |
Matter wave interferometry in microgravityKrutzik, Markus 20 October 2014 (has links)
Quantensensoren auf Basis ultra-kalter Atome sind gegenwärtig auf dem Weg ihre klassischen Pendants als Messintrumente sowohl in Präzision als auch in Genauigkeit zu überholen, obwohl ihr Potential noch immer nicht vollständig ausgeschöpft ist. Die Anwendung von Quantensensortechnologie wie Materiewelleninterferometern im Weltraum wird ihre Sensitivität weiter steigen lassen, sodass sie potentiell die genauesten erdbasierten Systeme um mehrere Grössenordnungen übertreffen könnten. Mikrogravitationsplattformen wie Falltürme, Parabelflugzeuge und Höhenforschungsraketen stellen exzellente Testumgebungen für zukünftge atominterferometrische Experimente im Weltraum dar. Andererseits erfordert ihre Nutzung die Entwicklung von Schlüsseltechnologien, die hohe Standards in Bezug auf mechanische und thermische Robustheit, Autonomie, Miniaturisierung und Redundanz erfüllen müssen. In der vorliegenden Arbeit wurden erste Interferometrieexperimente mit degenerieten Quantengasen in Schwerelosigkeit im Rahmen des QUANTUS Projektes durchgeführt. In mehr als 250 Freifall-Experimenten am Bremer Fallturm konnte die Präparation, freie Entwicklung und Phasenkohärenz eines Rubidium Bose- Einstein Kondensates (BEC) auf makroskopischen Zeitskalen von bis zu 2 s untersucht werden. Dazu wurde ein BEC-Interferometer mittels Bragg-Strahlteilern in einen Atomchip-basierten Aufbau implementiert. In Kombination mit dem Verfahren der Delta-Kick Kühlung (DKC) konnte die Expansionsrate der Kondensate weiter reduziert werden, was zur Beobachtung von effektiven Temperaturen im Bereich von 1 nK führte. In einem Interferometer mit asymetrischer Mach-Zehnder Geometrie konnten Interferenzstreifen mit hohem Kontrast bis zu einer Verweildauer von 2T = 677 ms untersucht werden. / State-of-the-art cold atomic quantum sensors are currently about to outpace their classical counterparts in precision and accuracy, but are still not exploiting their full potential. Utilizing quantum-enhanced sensor technology such as matter wave interferometers in the unique environment of microgravity will tremendously increase their sensitivity, ultimately outperforming the most accurate groundbased systems by several orders of magnitude. Microgravity platforms such as drop towers, zero-g airplanes and sounding rockets are excellent testbeds for advanced interferometry experiments with quantum gases in space. In return, they impose demanding requirements on the payload key technologies in terms of mechanical and thermal robustness, remote control, miniaturization and redundancy. In this work, first interferometry experiments with degenerate quantum gases in zero-g environment have been performed within the QUANTUS project. In more than 250 free fall experiments operated at the drop tower in Bremen, preparation, free evolution and phase coherence of a rubidium Bose-Einstein condensate (BEC) on macroscopic timescales of up to 2 s have been explored. To this end, a BEC interferometer using first-order Bragg diffraction was implemented in an atomchip based setup. Combined with delta-kick cooling (DKC) techniques to further slow down the expansion of the atomic cloud, effective temperatures of about 1 nK have been reached. With an asymmetrical Mach-Zehnder geometry, high-contrast interferometric fringes were observed up to a total time in the interferometer of 2T = 677 ms.
|
Page generated in 0.0489 seconds