• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 305
  • 70
  • 44
  • 27
  • 27
  • 18
  • 16
  • 14
  • 10
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 664
  • 257
  • 139
  • 117
  • 61
  • 59
  • 49
  • 45
  • 45
  • 44
  • 43
  • 42
  • 41
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Continuous Electrowetting Actuation Utilizing Current Rectification Properties of Valve Metal Films

Lynch, Corey 31 December 2010 (has links)
Electrowetting on dielectric (EWOD) is a technique for reducing the apparent contact angle of a fluid droplet, which has many promising applications in the fields of optics, digital displays, and lab-on-a-chip research. In this thesis, a design is presented for a novel single circuit device for achieving continuous droplet motion, by using the current-rectifying properties of valve metals to create diode-like behavior. This contrasts with existing designs, which require an array of individual electrodes to achieve motion in discrete steps. We are able to demonstrate continuous droplet motion across a 28mm-long test strip with an applied voltage of 303 V and a velocity of 5.59 mm/s (at 370 V) using an ionic-fluid electrolyte (BMIM-PF6), and have achieved actuation at as low as 185 V, with a maximum observed velocity (at 300 V) of 13.8 mm/s using a 1M sodium sulfate solution.
222

Femtosecond laser nanoaxotomy lab-on-a-chip for in-vivo nerve regeneration studies

Guo, Xun, doctor of mechanical engineering 15 February 2012 (has links)
Surgery of axons in C. elegans using ultrafast laser pulses, and observing their subsequent regrowth opens a new frontier in neuroscience, since such research holds a great potential for the development of novel therapies and cures to neurodegenerative diseases. In order to make the required large-scale genetic screenings in C. elegans possible and thus obtain statistically significant biological data, an automated laser axotomy system needs to be developed. Microfluidic devices hold the promise of improved throughput by integrating different functional modules into a single chip. The first step to developing a microfluidic device for laser axotomy is to devise an on-chip worm trapping method, which maintains a high degree of immobilization to sever axons without using anesthetics. In this thesis, we present a novel method that uses a thin, deflectable PDMS membrane that individually traps worms in a microfluidic device. Axons can successfully be severed with the same accuracy as those using conventional paralyzing techniques. This device also incorporates recovery chambers for housing worms after surgery and for time-lapse imaging of axonal regrowth without the repeated use of anesthetics. Towards accomplishing an automated, high-throughput laser axotomy system, we developed an improved microfluidic design based on the same mechanical immobilization technique. This second generation device allows for serially processing of a large quantity of worms rapidly using a semi-automated system. Integrated to the opto-mechanical platform, a software program utilizing image processing techniques is developed. This semi-automated program can automatically identify the location of worms, their neuronal cell bodies, focus on the axons of interest, and align the laser beam with the axon via a PID based viso-servo feedback algorithm. Statistic data demonstrate that there is no significant difference in axonal reconnection rates between surgeries performed on-chip and using anesthetics. To improve flow control, a three-dimensional novel microfluidic valve structure is designed and fabricated. This novel valve structure allows for a complete sealing of the flow channel, without degrading optical conditions for imaging and laser ablation in the trapping area. Finally, we developed a prototypical microfluidic assembly that will eventually be able to interface a well-plate to automatically deliver population of worms from individual wells to the automated chip for axotomy. This interface consists of a microfluidic multiplexer to significantly reduce the number of solenoid valves needed to individually address each well. / text
223

Digital Innovation : Orchestrating Network Activities

Lund, Jesper January 2015 (has links)
Digitization of analogue everyday artifacts, i.e. when physical products are equipped with digital capabilities, has a profound impact on today’s society. Some examples of these digital innovations aimed at consumer markets are the “connected” car, the digitized television set, and in the near future, digitized IKEA furniture. Digital innovation provides endless opportunities for providing value adding products and services. However, in digital innovation there is a need to find new ways of organizing network activities, i.e. activities such as e.g. production and translation of knowledge and enrollment of actors. These activities need to embrace and build on the networked aspects and the complexity inherent to digital innovation. This requires network activities that can overcome challenges with the ambiguous and messy characteristics of digital innovation. In this thesis, I propose that the theoretical perspective of network orchestration can enlighten fruitful ways to address challenges that are encountered when organizing network activities in digital innovation. Inspired by practical challenges with digital innovation, as well as contemporary calls for research within IS, this thesis investigates: How can network activities be orchestrated in digital innovation? Two cases of digital innovation aimed at consumer markets are studied. The first case concerns the digitization of the newspaper. The second case regards the digitization of door locks. Literature about digital innovation is used to understand the context of the studied phenomenon. Furthermore, theories about network orchestration as well as activities in innovation are used as a theoretical framework to help answer the research question. The thesis is based on an interpretative perspective where a multi-method approach has been applied to address the research question. The contribution is divided into two different parts. The first part presents four categories of empirically derived network activities that address socio-technical challenges with organizing digital innovation. The second part is a proposed model detailing orchestration of network activities in digital innovation. The model is based around the four suggested categories of network activities: (1) Supporting flexible innovation networks, (2) Production and translation of layered architectural knowledge, (3) Addressing heterogeneous user communities, and (4) Harnessing generativity to leverage value. The categories of network activities can be viewed as building blocks for the orchestration process. By emphasizing both a proactive and a reactive way of orchestrating digital innovation, the model proposes a means for organizations to address the ambiguity and complexity of digital innovation.
224

Biosensor Development for Environmental Monitoring, Food Safety, and Secondary Education Applications

Liang, Pei-Shih January 2013 (has links)
This dissertation develops biosensors for rapid detection of pathogens for environmental monitoring and food safety applications and utilizes the multidisciplinary and multi-application characteristics of biosensors to develop a lesson plan that can be implemented in secondary education classrooms. The detection methods evolve from particle immunoagglutination assay, PDMS optofluidic lab-on-a-chip, and spectrum analysis to smartphone and image analysis without any reagent; the potential application in secondary education also underlines the extended value of biosensors. In the first paper presented here, an optofluidic lab-on-a-chip system and subsequent sampling procedure were developed for detecting bacteria from soil samples utilizing Mie scattering detection of particle immunoagglutination assay. This system and protocol detected the presence of Escherichia coli K12 from soil particles in near real-time (10 min) with a detection limit down to 1 CFU mL⁻¹ and has the potential to be implemented in the field. We also compared the interaction between E. coli and soil particles to the two-step protein-surface interaction. In the second paper, a smartphone-utilized biosensor consisting of a near-infrared (NIR) LED (wavelength of 880 nm) and a digital camera of a smartphone was developed for detecting microbial spoilage on ground beef, without using any reagents. The method was further improved by programming a smartphone application that allows the user to position the smartphone at an optimum distance and a range of angles utilizing its internal gyro sensor to measure a series of scatter intensities against the detection angle. This handheld device can be used as a preliminary screening tool to monitor microbial contamination on meat products. In the third paper, we designed a lesson plan for secondary education classrooms using biosensors as a core and branching out to different applications and fields of study with the goal of heightening students' interest and motivation toward attaining degrees and careers in STEM fields. Results revealed that the lesson was more effective in affecting younger students than older students, and more effective in teaching about the applications of biosensors than about the techniques of biosensor development.
225

Biosensor Development for Environmental Monitoring, Food Safety, and Secondary Education Applications

Liang, Pei-Shih January 2013 (has links)
This dissertation develops biosensors for rapid detection of pathogens for environmental monitoring and food safety applications and utilizes the multidisciplinary and multi-application characteristics of biosensors to develop a lesson plan that can be implemented in secondary education classrooms. The detection methods evolve from particle immunoagglutination assay, PDMS optofluidic lab-on-a-chip, and spectrum analysis to smartphone and image analysis without any reagent; the potential application in secondary education also underlines the extended value of biosensors. In the first paper presented here, an optofluidic lab-on-a-chip system and subsequent sampling procedure were developed for detecting bacteria from soil samples utilizing Mie scattering detection of particle immunoagglutination assay. This system and protocol detected the presence of Escherichia coli K12 from soil particles in near real-time (10 min) with a detection limit down to 1 CFU mL⁻¹ and has the potential to be implemented in the field. We also compared the interaction between E. coli and soil particles to the two-step protein-surface interaction. In the second paper, a smartphone-utilized biosensor consisting of a near-infrared (NIR) LED (wavelength of 880 nm) and a digital camera of a smartphone was developed for detecting microbial spoilage on ground beef, without using any reagents. The method was further improved by programming a smartphone application that allows the user to position the smartphone at an optimum distance and a range of angles utilizing its internal gyro sensor to measure a series of scatter intensities against the detection angle. This handheld device can be used as a preliminary screening tool to monitor microbial contamination on meat products. In the third paper, we designed a lesson plan for secondary education classrooms using biosensors as a core and branching out to different applications and fields of study with the goal of heightening students' interest and motivation toward attaining degrees and careers in STEM fields. Results revealed that the lesson was more effective in affecting younger students than older students, and more effective in teaching about the applications of biosensors than about the techniques of biosensor development.
226

Clinical Practice Guideline Implementation for Alpha-1 Antitrypsin Deficiency Testing: Evaluation of an Innovative Method

Steffen, Priscilla January 2010 (has links)
Purpose/Aims: The American Thoracic Society (ATS) published recommendations for alpha-1 antitrypsin deficiency (AATD) testing in 2003. This descriptive project evaluates the outcomes of ATS AATD guideline use in the setting of the pulmonary function testing (PFT) lab.The specific aims met by this descriptive project describe the prevalence of AATD cases and carriers in the sample, examine to what degree the established clinical guideline promoted accurate patient selection for the alpha-1 test in the sample, and aimed to determine whether alpha-1 antitrypsin blood levels are reduced in current smokers compared to former or never smokers.Background: Alpha-1 antitrypsin prevents lung tissue breakdown by attenuating excess elastase released from neutrophils during the inflammatory response. Smoking impairs alpha-1 antitrypsin protection at the site of lung inflammation promoting emphysema development. In the case of genetic mutation, protective alpha-1 antitrypsin levels are reduced, causing emphysema even in non-smokers. Significantly reduced protective levels of alpha-1 antitrypsin increase the odds for morbidity and early mortality from emphysema. The literature provides support for targeted testing in the population most affected.Sample/Methods: The sample population included adults 21 through 79 years completing pulmonary function testing over 18 months in a metropolitan pulmonary medicine practice and was retrospectively reviewed.Of the 521 in the sample, 190 were tested for AATD, and 24 were found to carry an abnormal genotype. However, using Table 11 from the ATS CPG failed to provide structured, consistent guidance in selecting patients for AATD testing. Still, the prevalence of the abnormal genotypes MS, MZ, SZ, and ZZ was increased in this pulmonary population compared to the published estimated prevalence for the general population.A structured decision-tree, developed from the original guideline for diagnostic testing, may provide superior guidance for AATD test patient selection in this setting. Increased case finding by targeted testing of patients in the setting of the pulmonary function lab can serve to integrate this clinical practice guideline in a consistent streamlined fashion.In this sample, no difference between AAT blood levels among ever, never, and current tobacco smokers was detected. A more powerful sample is needed.
227

Preparation for a Laboratory Exercise : the effects of writing a summary

Nordekvist, Kristoffer January 2009 (has links)
This degree project has studied how a changed preparation affected students' outcome of a laboratory exercise. Through use of cognitive load theory and sociocultural theory a guided writing of summary was designed. Students in secondary school were let to prepare for a laboratory exercise through a traditional teacher led introduction or the guided writing of summary. Data was collected as observations, worksheets, tests and evaluations. Results suggest that the guided writing of summary facilitated a construction of cognitive schema supporting students' method. This made them follow instructions and understand purpose of the laboratory exercise before and during the exercise in a better way than students preparing through a teacher led introduction. Furthermore students' perception of aim of the exercise shifted from theoretical work afterwards to theoretical work before and practical work during the exercise. This shows an improved understanding of links between theory and practice. / Detta examensarbete har studerat hur en förändrad förberedelse påverkade elevers utfall av en laborationsövning. Med stöd av kognitiv belastningsteori och sociokulturell teori designades ett väglett skrivande av sammanfattning. Studenter, i motsvarande grundskolans senare år, fick förbereda sig för en laboration genom en traditionell lärarledd introduktion eller det vägledda skrivandet av sammanfattning. Data samlades in i form av observationer, arbetshäften, tester och utvärderingar. Resultatet tyder på att den vägledda skriftliga sammanfattningen underlättade för en konstruktion av kognitivt schema vilket undelättade elevernas metod. Detta gjorde att de följde instruktioner och förstod mening med laborationen före och under denna på ett bättre sätt än elever som förberedde sig med en lärarledd introduktion. Vidare ändrades elevernas uppfattning om målet med laborationen från teoretiskt arbete efter övningen till teoretiskt arbete före och praktiskt arbete under laborationen. Detta visade på en ökad förståelse av kopplingar mellan teori och praktik.
228

Production of Linear Alkybenzene Sulfonic Acid (LAS) at High Pressure in Supercritical Carbon Dioxide Medium

Basry Attar, Mohammad January 2010 (has links)
Linear Alkyl benzene Sulfonic Acid (LAS) is the main ingredient of many commercial formulations for industrial and domestic synthetic detergents. The current industrial LAS production method includes sulfonation of linear alkylbenzene (LAB) with sulfur trioxide in tubular falling film reactors. In such reactors a diluted gaseous stream of SO3 and dry air, feed gas, is contacted with liquid LAB while both reactants flow co-currently downward. The reaction is highly exothermic and product quality is primarily dependent on heat removal efficiency from the reactors, and also contact time. This research project investigates a new route for the production of LAS. This new method employs SO2 oxidation over activated carbon at 25oC to SO3, followed by the extraction of the adsorbed SO3 from the activated carbon by supercritical carbon dioxide (SCCO2). The condensed phase CO2-SO3 mixture after expansion is contacted with LAB where sulfonation of this substrate occurs to yield LAS. The new route should offer lower operating temperatures and lower feed gas SO3 concentrations in the sulfonation reaction to minimize loss of LAB to side-reactions and reduce LAS contamination (that appears as unacceptable product discoloration). The laboratory set up was designed, assembled and in total 25 experiments were carried out. Over the course of experiments a number of remedial actions were taken to improve set up functionality and reaction yield. The problems needed to be tackled included feed gas moisture removal, SO2/SO3 adsorption/desorption efficiency, homogeneous mixing of reactants and reducing the SCCO2/SO3 flow rate through LAB columns. The maximum LAB/LAS conversion obtained was 3.6 % per sulfonation column. The maximum SO3 removal efficiency from activated carbon obtained was 77%. It was also found that nitrogen gas in a specific temperature range may be used as the desorbing agent in lieu of supercritical carbon dioxide with satisfactory performance. As supplementary data, the Brauner-Emmet-Teller surface area of activated carbon type BPL 6x16 from “Calgon Carbon Corporation” was measured.
229

Digital Microfluidics: A Versatile Platform For Applications in Chemistry, Biology and Medicine

Jebrail, Mais J. 31 August 2011 (has links)
Digital microfluidics (DMF) has recently emerged as a popular technology for a wide range of applications. In DMF, nL-mL droplets containing samples and reagents are controlled(i.e., moved, merged, mixed, and dispensed from reservoirs) by applying a series of electrical potentials to an array of electrodes coated with a hydrophobic insulator. DMF is distinct from microchannel-based fluidics as it allows for precise control over multiple reagent phases (liquid and solid) in heterogeneous systems with no need for complex networks of microvalves. In this thesis, digital microfluidics has been applied to address key challenges in the fields of chemistry, biology and medicine. For applications in chemistry, the first two-plate digital microfluidic platform for synchronized chemical synthesis is reported. The new method, which was applied to synthesizing peptide macrocycles, is fast and amenable to automation, and is convenient for parallel scale fluid handling in a straightforward manner. For applications in biology, I present the first DMF-based method for extraction of proteins (via precipitation) in serum and cell lysate. The performance of the new method was comparable to that of conventional techniques, with the advantages of automation and reduced analysis time. The results suggest great potential for digital microfluidics for proteomic biomarker discovery. Furthermore, I integrated DMF with microchannels for in-line biological sample processing and separations. Finally, for applications in medicine, I developed the first microfluidic method for sample clean-up and extraction of estrogen from one-microliter droplets of breast tissue homogenates, blood, and serum. The new method is fast and automated, and features >1000x reduction in sample use relative to conventional techniques. This method has significant potential for applications in endocrinology and breast cancer risk reduction. In addition, I describe a new microfluidic system incorporating a digital microfluidic platform for on-chip blood spotting and processing, and a microchannel emitter for direct analysis by mass spectrometry. The new method is fast, robust, precise, and is capable of quantifying analytes associated with common congenital disorders such as homocystinuria, phenylketonuria, and tyrosinemia.
230

Digital Microfluidics: A Versatile Platform For Applications in Chemistry, Biology and Medicine

Jebrail, Mais J. 31 August 2011 (has links)
Digital microfluidics (DMF) has recently emerged as a popular technology for a wide range of applications. In DMF, nL-mL droplets containing samples and reagents are controlled(i.e., moved, merged, mixed, and dispensed from reservoirs) by applying a series of electrical potentials to an array of electrodes coated with a hydrophobic insulator. DMF is distinct from microchannel-based fluidics as it allows for precise control over multiple reagent phases (liquid and solid) in heterogeneous systems with no need for complex networks of microvalves. In this thesis, digital microfluidics has been applied to address key challenges in the fields of chemistry, biology and medicine. For applications in chemistry, the first two-plate digital microfluidic platform for synchronized chemical synthesis is reported. The new method, which was applied to synthesizing peptide macrocycles, is fast and amenable to automation, and is convenient for parallel scale fluid handling in a straightforward manner. For applications in biology, I present the first DMF-based method for extraction of proteins (via precipitation) in serum and cell lysate. The performance of the new method was comparable to that of conventional techniques, with the advantages of automation and reduced analysis time. The results suggest great potential for digital microfluidics for proteomic biomarker discovery. Furthermore, I integrated DMF with microchannels for in-line biological sample processing and separations. Finally, for applications in medicine, I developed the first microfluidic method for sample clean-up and extraction of estrogen from one-microliter droplets of breast tissue homogenates, blood, and serum. The new method is fast and automated, and features >1000x reduction in sample use relative to conventional techniques. This method has significant potential for applications in endocrinology and breast cancer risk reduction. In addition, I describe a new microfluidic system incorporating a digital microfluidic platform for on-chip blood spotting and processing, and a microchannel emitter for direct analysis by mass spectrometry. The new method is fast, robust, precise, and is capable of quantifying analytes associated with common congenital disorders such as homocystinuria, phenylketonuria, and tyrosinemia.

Page generated in 0.0572 seconds