Spelling suggestions: "subject:"late""
411 |
A Comparative Analysis of School Reorganization of Bear Lake County IdahoAthay, Morris B. 01 May 1957 (has links)
Education, always important, is today more essential than ever if we are to perpetuate and improve our democratic way of life . The recognition of the importance of education in our society has resulted in planning at the national , state and local levels.
|
412 |
Irrigation Demand in the Utah Lake Drainage Area the Role of Irrigation EfficiencyMizue, Hiro 01 May 1968 (has links)
The effect of irrigation efficiency upon the water demand for agricultural purposes in the Utah Lake drainage area has been evaluated in this study . Irrigation demand is the quantity of water at the supply source necessary to satisfy crop water requirements, taking into account irrigation efficiency.
The Utah Lake drainage area was divided into hydrologic subareas and districts to facilitate analysis. The demand, surplus, and deficit quantities for each area was determined. The computations were made using constant mean quantities. Within a given area, the diverted water was assumed to be applied uniformly to satisfy agricultural crop demands, and the contribution of groundwater was neglected.
The quantity of major interest is the surplus or deficit, which has been computed for present and potential future irrigation effiencies taking into account historical diversions and precipitation, and estimated root zone storage. The crop demand is not adequately met in the study area. There is a surplus in the Provo district (29,000 acre-feet annually), while deficits occur in the Spanish Fork district (69,000 acre-feet annually) and Northern Juab Valley subarea (38,000 acre-feet annually). The common pattern is excessive diversions in May and insufficient diversions in July through September. The present mean irrigation efficiency of 36 percent in the Utah Lake dra inage area results in an annual deficit of 111,000 acre-feet, of which 69,000 acre-feet occurs in Utah Valley. The maximum monthly deficit is 76,000 acre-feet, which occurs in August.
Provided irrigation efficiencies were increased to 68 percent, surplus would exist in every month and the annual surplus would be 159,000 acre-feet. The combination of additional storage facilities to modify the diversion to coincide with crop demand, reallocation of water from water -plenty to water -short areas, and increasing the irrigation efficiency would provide the best economic use of water for the benefit of the area. (169 pages)
|
413 |
Salt Lake Jewish Community CenterAndrew, Allan S. 01 May 1975 (has links)
This historical study dealt with a specific segment of the Salt Lake City population which foresaw the need of a community center to meet their long range goal s and leisure time needs.
The purpose of the study was to accumulate existing details and information related to this subject and present an orderly time line of events which lead to the establishment and dedication of the existing Salt Lake Jewish Community Center.
The pages contained names and events that will forever have a valued meaning to those '"ho became familiar with the Salt Lake Jewish Community Center.
|
414 |
The availability of phosphorus from anoxic hypolimnia to epilimnetic plankton /Nürnberg, Gertrud. January 1984 (has links)
No description available.
|
415 |
Relations between moss hummocks and sorted circles in tundra vegetation, Knob Lake, Quebec.Sage Dunnett, Elizabeth. January 1968 (has links)
No description available.
|
416 |
The water budget of the Knob Lake area : a hydrologic study in central Labrador-Ungava.Findlay, Bruce Frederick. January 1966 (has links)
No description available.
|
417 |
Rooted aquatic macrophytes and the cycling of littoral zone metalsJackson, Leland J. (Leland Joseph) January 1992 (has links)
No description available.
|
418 |
Periodic forcing of surface water-groundwater interaction : modelling in vertical sectionTony.J.Smith@csiro.au, Anthony John Smith January 1999 (has links)
Sinusoidal variations in recharge can induce cyclical flows in surface water and groundwater. In this thesis, such time-dependent flows are explored in a coupled lakeaquifer system. The modelling extends previous steady state results and introduces new flow-visualisation techniques. Local responses in a 2D vertical section are illustrated for lakes within a 1D regional groundwater mound. The theory employs complex variables to decouple the periodic groundwater flows into separate steady state and fluctuating components.
The time dependent behaviour causes the lake-aquifer flow to change between flowthrough, recharge and discharge regimes. Corresponding fluctuations between inflow and outflow across the lakebed allow interchange of lake water with the aquifer (recycling and recapture). This also gives rise to sinuous flowpaths that can result in apparent dispersion; the number and size of waves, cusps and loops is characterised by a nondimensional waviness ratio. Streakline plots are introduced and provide an intuitive impression of the time-dependent groundwater motion. Such plots are enhanced by animation and illustrate the complex and potentially dispersive nature of the flows.
Interplay between the steady state and fluctuating responses determines the type and strength of flow regime transition. Importantly, there is an inverse relationship between head and flow in the fluctuating response. This is characterised by a dimensionless response time; a function of the aquifer geometry, hydraulic properties and period of fluctuation. During fast response, the recharge propagates mainly as fluctuation in flow, with small phase lags; particle trajectories form elliptical paths in the visualised flows. With a slower aquifer response, variation in recharge is manifest mostly as fluctuation in water level; cyclical perturbations in the flows are small and flows are nearly in steady state.
The position of a lake within the regional setting, size of the lake, and ratio of lake to aquifer recharge are important to the steady state response. Flow-through regimes occur throughout the regional setting, but dominate when the lake is lower in the system and groundwater flow is greater. Discharge and recharge regimes occur higher in the flow system, when the ratio of lake to aquifer recharge is large in magnitude.
|
419 |
Depositional record of historic lahars in the Whangaehu Gorge, Mt. RuapehuGraettinger, Alison Hollomon January 2008 (has links)
Mt. Ruapehu is one of the most lahar prone volcanoes in the world, having both a crater lake and six small glaciers upon its 2797 m summit. The major outlet for the crater lake, the Whangaehu Gorge, has hosted over 46 historic lahars. However, the low preservation of debris flow deposits, as a result of frequent remobilisation on steep slopes, allows for the detailed description of only 9 lahar events over the last 150 years. Field investigation, historic aerial photos, two airborne LiDAR surveys and direct measurements have been utilised to describe the sedimentology, geomorphology and distribution of historic lahar deposits in the first 11 km of the Whangaehu Gorge. Inundation maps have been created for 1945, 1953, 1975, September 1995, October 1995, March 2007 and September 2007. Grain size distribution, componentry and geomorphology of the 1861, 1975, September 1995, October 1995, 1999 and 2007 lahar deposits have been compared. The lahar deposits are massive, very poorly sorted, silty gravels that form a series of unconsolidated terraces. The limited sediment sources in the steep sided Whangaehu Gorge, including minor historic eruption products, results in significant recycling of lahar deposits. However, the deposits can be differentiated by proportions of lithological components and in some cases anthropogenic debris. The abundance of hydrothermally altered material reflects the role of Crater Lake in lahar formation, although, some of these materials (gypsum, sulphur and snow) are only temporary. Non-cohesive debris flows and occasional snow slurry lahars have been formed by a range of triggering mechanisms associated with and independent of eruptions. Lahars have been formed in the Whangaehu Valley as the result of ejected crater lake water and associated snow melt (1975, September 1995 and September 2007), as well as the progressive displacement of lake water as a result of lava dome growth (1945) and uplift of the lake floor (1968). Inter-eruption lahars occur as a result of Crater Lake outburst floods (1861, 1953 and March 2007) and remobilisation by precipitation and the collapse of tephra laden snow (October 1995 and 1999). The comparison of historic lahars also reflects the range of lahar magnitudes experienced historically on Ruapehu. The most recent Crater Lake outburst of March 2007, with a peak discharge of 1700-2500 m3/s is the second largest recorded lahar, behind only the eruption-generated lahar of April 1975 with a peak discharge of 5000-7500 m3/s. Lahar mitigation can subsequently be based on lahar generation and incorporation of the vast amounts of data collected before and after the 2007 outburst flood. Recent remobilisation and phreatic activity suggest the significant under-representation of small volume events like rain-generated and snow slurry lahars in the geologic record.
|
420 |
Pore water chemistry and early diagenesis in sediments of Lake Rotorua, New ZealandMotion, Olivia Jane January 2007 (has links)
To gain an understanding of the transfer of nutrients and trace elements from sediment pore waters to surface waters of eutrophic Lake Rotorua and the early diagenetic processes controlling the transfer, pore water chemistry in the sediments of Lake Rotorua was investigated over a one year period in 2006 by collection of sediment cores on three occasions and deployment of pore water equilibrators on two occasions. Pore water concentrations of Fe2+, Mn2+, S, PO4, NH4, As, Cd, and Pb were analysed. Phosphate and ammonium fluxes to the water column from the sediments were calculated from measured concentration gradients by Fick's law of diffusion. Gas present in the sediments was analysed for composition, and source, and its ebullition rate measured. Anaerobic oxidation of organic matter is indicated by negative Eh values. Sulfate reduction was indicated near the sediment-water interface and releases of Fe2+, Mn2+, PO4 and NH4 into the pore water from particulate material were associated with the reducing conditions. Peaks in concentration of nutrients and elements occurred at the sediment surface over summer and deeper in the pore water profile over the cooler months of May and September. Sampling with peepers at fine scales immediately above the sediment-water interface indicated the presence of a nepheloid layer where elements are actively being recycled. Sulfate reduction appears to occur in the layer above the sediment-water interface, indicating that dissolved oxygen has already been reduced. Phosphorus is possibly being removed by iron and manganese oxide/hydroxide precipitation 5 to 15 cm above the sediment-water interface. Pore water saturation calculations indicate that sulfides may be controlling concentrations of iron and possibly other metals in the pore water by formation of pyrite in the zone of sulfate reduction. Below the zone of sulfate reduction, siderite and vivianite may be precipitating and acting as an additional sink for iron and phosphorus. ii Nutrient release rates based on Fick's law of diffusion indicated 430 tonnes of dissolved phosphorus and 1150 tonnes of ammonium were released to Lake Rotorua's water column in 2006, suggesting nutrient release from the sediments is the dominant flux of nutrients to the water column of Lake Rotorua. Methanogenesis, from acetate fermentation, occurs below the zone of sulfate reduction, where it becomes the dominant process in organic matter degradation. Ebullition of gas was measured at 126 ml m-2 d-1 and this gas was comprised dominantly of methane. Possible remediation techniques that could reduce the internal load of nutrients released from the lake sediments include sediment removal by dredging or capping the sediments with an adsorbent or sealing layer. Capping the sediments could be compromised by ebullition of gas that would disrupt the capped layer, opening up pathways that allow more readily for exchange between pore water nutrients and the water column. Dredging is likely to stimulate the ebullition of most of the trapped gas and result in a rapid efflux of much of the nutrient rich pore water into the lake, however dredging the top 10 to 20 cm of the sediments may partially reduce phosphorus in the pore waters but would not substantially reduce ammonium and fluxes would remain similar to current levels. Improving redox conditions in the sediments could reduce pyrite formation improving phosphorus binding with iron.
|
Page generated in 0.0376 seconds