Spelling suggestions: "subject:"lanthanoid"" "subject:"lanthanoide""
1 |
Mechanochemische Synthese und Charakterisierung von fluorhaltigen Koordinationspolymeren der ErdalkalimetalleZänker, Steffen 04 February 2022 (has links)
Vorgestellt werden die gezielte mechanochemische sowie die fluorolytische Sol-Gel-Synthese von fluorierten Koordinationspolymeren mit dem Strukturmotiv einer direkten Metall-Fluor Bindung. Im Vorfeld beschränkten sich die mechanochemischen Synthesen von fluorierten
Koordinationspolymeren (FCPs) darauf, Fluor über den organischen Linker im Netzwerk zu
integrieren. Auch fehlten Studien, welche die Materialeigenschaften bezüglich der unterschiedlichen Fluorpositionen miteinander verglichen. Es wird die erste mechanochemische Synthese eines Koordinationspolymers mit einer direkten Metall-Fluorid-Bindung (Bariumterephthalatfluorid (BaF(p-BDC)0,5)) vorgestellt. Auch das Strontiumacetatfluorid (SrF(CH3COO)), Bariumacetatfluorid (BaF(CH3COO)) und das
Bleiacetatfluorid (PbF(CH3COO) konnten durch unterschiedliche Synthesemethoden dargestellt werden. Die Kristallstrukturen wurden aus den Röntgenpulverdiffraktogrammen bestimmt. Unterstützt werden die Strukturlösungen u. a. durch die chemische Verschiebung in den 19F-MAS-NMR-Spektren, aus denen die Metall-Fluor-Abstände berechnet und mit denen aus den Kristallstrukturen verglichen wurden. Die vorgestellten Koordinationspolymere vervollständigen die Reihe der Verbindungen, welche aus Linkern mit gleichem Kohlenstoffskelett, gleichem Metallkation und ähnlicher chemischer Zusammensetzung, jedoch unterschiedlichen Fluorpositionen bestehen. Die gewählten Koordinationspolymere erlaubten damit den Vergleich der thermischen Stabilität, des Wasserabsorptionsverhaltens, sowie die Acidität der sauren Zentren an der Oberfläche bzgl. der unterschiedlichen Bindungsmotive des Fluors. In Abhängigkeit von der Fluorposition zeigen die Lanthanoid-dotierten Koordinationspolymere unterschiedlich lange Lebenszeiten der angeregten Zustände. Durch das Strukturmotiv der direkten Metall-Fluor-Bindung kann die Abklingzeit der angeregten Zustände des angeregten Lanthanoids deutlich verlängert werden. / The targeted mechanochemical and fluorolytic sol-gel synthesis of fluorinated coordination
polymers with the structural motif of a direct metal-fluorine bond are presented. Previously, the mechanochemical syntheses of fluorinated coordination polymers (FCPs) were limited to
integrating fluorine into the network via the organic linker. There were also no studies comparing the material properties of the different fluorine positions.The first mechanochemical synthesis of a coordination polymer with a direct metal fluorine bond
(barium terephthalate fluoride (BaF(p-BDC)0.5)) is presented. Also the strontium acetate fluoride (SrF(CH3COO)), barium acetate fluoride (BaF(CH3COO)) and lead acetate fluoride
(PbF(CH3COO)) can be obtained by different synthesis methods. The crystal structures were
determined from the X-ray diffractograms. The structural solutions are supported, among other things, by the chemical shift in the 19F MAS NMR spectra, from which the metal-fluorine distances were calculated and compared with those from the crystal structures.
The coordination polymers presented complete the series of compounds consisting of linkers with the same carbon skeleton, the same metal cation and similar chemical composition, but different fluorine positions. The selected coordination polymers thus allowed the comparison of thermal stability, water absorption behaviour and acidity of the acid centres on the surface with respect to the different bonding motives of the fluorine. Depending on the fluorine position, the lanthanide doped coordination polymers show different lifetimes of the excited states. Due to the structural motif of the direct metal-fluorine bond, the decay time of the excited states of the excited lanthanidecan be significantly extended.
|
2 |
Heterometallic Oxo-Alkoxides of Europium, Titanium and PotassiumBerger, Erik January 2010 (has links)
<p>Coordination compounds of europium and titanium with oxide, ethoxide (OCH<sub>2</sub>CH<sub>3</sub>), <em>iso</em>-propoxide (OCH(CH<sub>3</sub>)<sub>2</sub>) and <em>tert</em>-butoxide (OC(CH<sub>3</sub>)<sub>3</sub>) ligands have been studied. These belong to the general class of oxo-alkoxides, M<em><sub>x</sub></em>O<em><sub>y</sub></em>(OR)<em><sub>z</sub></em>, with alkoxide ligands (OR) containing an organic, aliphatic part R. The R group can be systematically varied, permitting the investigation of the influence of electronic and steric effects on the coordination of metal and oxygen atoms. Their tendency towards hydrolysis and formation of metal-oxygen-metal bridges also makes (oxo)alkoxides interesting as precursors in liquid solution-based or gas phase-based synthesis of many technologically important materials.</p><p>The structure of a termetallic oxo-alkoxide of formula Eu<sub>3</sub>K<sub>3</sub>TiO<sub>2</sub>(OH/OCH<sub>3</sub>)(OR)<sub>11</sub>(HOR) (R = C(CH<sub>3</sub>)<sub>3</sub>) was revealed by a combination of single-crystal X-ray diffraction and IR spectroscopy. Its unusual structure features a facial oxygen-centered Eu<sub>3</sub>K<sub>3</sub>O octahedron sharing one face with an oxygen-centered K<sub>3</sub>TiO tetrahedron. Six-coordination of oxygen by a combination of alkali metal and lanthanoid atoms is not uncommon for alkoxides, but the attachment of a tetrahedron to one of its faces provides a new dimension to the library of oxo-alkoxide structures. The structure was the result of incomplete metathesis in the synthesis attempt of europium-titanium oxo-<em>tert</em>-butoxides.</p><p>Eu<sub>4</sub>TiO(OR)<sub>14</sub> and (Eu<sub>0.5</sub>La<sub>0.5</sub>)<sub>4</sub>TiO(OR)<sub>14</sub> (R = CH(CH<sub>3</sub>)<sub>2</sub>) were found to be isostructural with previously published Ln<sub>4</sub>TiO(OR)<sub>14</sub> structures (Ln=Sm, Tb<sub>0.9</sub>Er<sub>0.1</sub>). X-ray diffraction and UV-Vis absorption results show no site preference for La in either the solid state or hexane solution. The Ln<sub>4</sub>TiO(OR)<sub>14</sub> structure forms part of an interesting group of Ln<sub>4</sub>MO(OR)<sub>10+<em>z</em></sub><em></em>(HOR)<em><sub>q</sub></em> structures where M is another lanthanoid (Ln) or a di-, tri- or tetravalent heteroatom, giving either a square pyramidal or a trigonal bipyramid-like coordination of the central oxygen atom, depending on the chemistry and size of M.</p><p>Eu<sub>2</sub>Ti<sub>4</sub>O<sub>2</sub>(OR)<sub>18</sub>(HOR)<sub>2</sub> (R = CH<sub>2</sub>CH<sub>3</sub>) was deduced from IR data to have the same molecular structure as Er<sub>2</sub>Ti<sub>4</sub>O<sub>2</sub>(OR)<sub>18</sub>(HOR)<sub>2</sub>. UV-Vis measurements are also in agreement with the presence of one symmetry-unique europium site in the molecular structure. Structure determination by single-crystal X-ray diffraction has yet to be performed.</p><p> </p><p>Coordination compounds of europium and titanium with oxide, ethoxide (OCH2CH3), isopropoxide(OCH(CH3)2) and tert-butoxide (OC(CH3)3) ligands have been studied. Thesebelong to the general class of oxo-alkoxides, MxOy(OR)z, with alkoxide ligands (OR)containing an organic, aliphatic part R. The R group can be systematically varied, permittingthe investigation of the influence of electronic and steric effects on the coordination of metaland oxygen atoms. Their tendency towards hydrolysis and formation of metal-oxygen-metalbridges also makes (oxo)alkoxides interesting as precursors in liquid solution-based or gasphase-based synthesis of many technologically important materials.The structure of a termetallic oxo-alkoxide of formula Eu3K3TiO2(OH/OCH3)(OR)11(HOR)(R = C(CH3)3) was revealed by a combination of single-crystal X-ray diffraction and IRspectroscopy. Its unusual structure features a facial oxygen-centered Eu3K3O octahedronsharing one face with an oxygen-centered K3TiO tetrahedron. Six-coordination of oxygen bya combination of alkali metal and lanthanoid atoms is not uncommon for alkoxides, but theattachment of a tetrahedron to one of its faces provides a new dimension to the library of oxoalkoxidestructures. The structure was the result of incomplete metathesis in the synthesisattempt of europium-titanium oxo-tert-butoxides.Eu4TiO(OR)14 and (Eu0.5La0.5)4TiO(OR)14 (R = CH(CH3)2) were found to be isostructuralwith previously published Ln4TiO(OR)14 structures (Ln=Sm, Tb0.9Er0.1). X-ray diffraction andUV-Vis absorption results show no site preference for La in either the solid state or hexanesolution. The Ln4TiO(OR)14 structure forms part of an interesting group of Ln4MO(OR)10+z-(HOR)q structures where M is another lanthanoid (Ln) or a di-, tri- or tetravalent heteroatom,giving either a square pyramidal or a trigonal bipyramid-like coordination of the centraloxygen atom, depending on the chemistry and size of M.Eu2Ti4O2(OR)18(HOR)2 (R = CH2CH3) was deduced from IR data to have the samemolecular structure as Er2Ti4O2(OR)18(HOR)2. UV-Vis measurements are also in agreementwith the presence of one symmetry-unique europium site in the molecular structure. Structuredetermination by single-crystal X-ray diffraction has yet to be performed.</p>
|
3 |
Heterometallic Oxo-Alkoxides of Europium, Titanium and PotassiumBerger, Erik January 2010 (has links)
Coordination compounds of europium and titanium with oxide, ethoxide (OCH2CH3), iso-propoxide (OCH(CH3)2) and tert-butoxide (OC(CH3)3) ligands have been studied. These belong to the general class of oxo-alkoxides, MxOy(OR)z, with alkoxide ligands (OR) containing an organic, aliphatic part R. The R group can be systematically varied, permitting the investigation of the influence of electronic and steric effects on the coordination of metal and oxygen atoms. Their tendency towards hydrolysis and formation of metal-oxygen-metal bridges also makes (oxo)alkoxides interesting as precursors in liquid solution-based or gas phase-based synthesis of many technologically important materials. The structure of a termetallic oxo-alkoxide of formula Eu3K3TiO2(OH/OCH3)(OR)11(HOR) (R = C(CH3)3) was revealed by a combination of single-crystal X-ray diffraction and IR spectroscopy. Its unusual structure features a facial oxygen-centered Eu3K3O octahedron sharing one face with an oxygen-centered K3TiO tetrahedron. Six-coordination of oxygen by a combination of alkali metal and lanthanoid atoms is not uncommon for alkoxides, but the attachment of a tetrahedron to one of its faces provides a new dimension to the library of oxo-alkoxide structures. The structure was the result of incomplete metathesis in the synthesis attempt of europium-titanium oxo-tert-butoxides. Eu4TiO(OR)14 and (Eu0.5La0.5)4TiO(OR)14 (R = CH(CH3)2) were found to be isostructural with previously published Ln4TiO(OR)14 structures (Ln=Sm, Tb0.9Er0.1). X-ray diffraction and UV-Vis absorption results show no site preference for La in either the solid state or hexane solution. The Ln4TiO(OR)14 structure forms part of an interesting group of Ln4MO(OR)10+z(HOR)q structures where M is another lanthanoid (Ln) or a di-, tri- or tetravalent heteroatom, giving either a square pyramidal or a trigonal bipyramid-like coordination of the central oxygen atom, depending on the chemistry and size of M. Eu2Ti4O2(OR)18(HOR)2 (R = CH2CH3) was deduced from IR data to have the same molecular structure as Er2Ti4O2(OR)18(HOR)2. UV-Vis measurements are also in agreement with the presence of one symmetry-unique europium site in the molecular structure. Structure determination by single-crystal X-ray diffraction has yet to be performed. Coordination compounds of europium and titanium with oxide, ethoxide (OCH2CH3), isopropoxide(OCH(CH3)2) and tert-butoxide (OC(CH3)3) ligands have been studied. Thesebelong to the general class of oxo-alkoxides, MxOy(OR)z, with alkoxide ligands (OR)containing an organic, aliphatic part R. The R group can be systematically varied, permittingthe investigation of the influence of electronic and steric effects on the coordination of metaland oxygen atoms. Their tendency towards hydrolysis and formation of metal-oxygen-metalbridges also makes (oxo)alkoxides interesting as precursors in liquid solution-based or gasphase-based synthesis of many technologically important materials.The structure of a termetallic oxo-alkoxide of formula Eu3K3TiO2(OH/OCH3)(OR)11(HOR)(R = C(CH3)3) was revealed by a combination of single-crystal X-ray diffraction and IRspectroscopy. Its unusual structure features a facial oxygen-centered Eu3K3O octahedronsharing one face with an oxygen-centered K3TiO tetrahedron. Six-coordination of oxygen bya combination of alkali metal and lanthanoid atoms is not uncommon for alkoxides, but theattachment of a tetrahedron to one of its faces provides a new dimension to the library of oxoalkoxidestructures. The structure was the result of incomplete metathesis in the synthesisattempt of europium-titanium oxo-tert-butoxides.Eu4TiO(OR)14 and (Eu0.5La0.5)4TiO(OR)14 (R = CH(CH3)2) were found to be isostructuralwith previously published Ln4TiO(OR)14 structures (Ln=Sm, Tb0.9Er0.1). X-ray diffraction andUV-Vis absorption results show no site preference for La in either the solid state or hexanesolution. The Ln4TiO(OR)14 structure forms part of an interesting group of Ln4MO(OR)10+z-(HOR)q structures where M is another lanthanoid (Ln) or a di-, tri- or tetravalent heteroatom,giving either a square pyramidal or a trigonal bipyramid-like coordination of the centraloxygen atom, depending on the chemistry and size of M.Eu2Ti4O2(OR)18(HOR)2 (R = CH2CH3) was deduced from IR data to have the samemolecular structure as Er2Ti4O2(OR)18(HOR)2. UV-Vis measurements are also in agreementwith the presence of one symmetry-unique europium site in the molecular structure. Structuredetermination by single-crystal X-ray diffraction has yet to be performed.
|
4 |
Organofosforové deriváty pro "click-chemistry" / Organophosphorus derivatives for "click-chemistry"Zemek, Ondřej January 2013 (has links)
Ondřej Zemek Organophosphorus derivatives for "click-chemistry" In this diploma thesis two new macrocyclic ligands were synthesized. They have DO3A moiety where metal (lanthanide) ion can be coordinated and terminal acetylenic or azide group connected through the phosphinic acid. Both terminal acetylenic and azide group should serve for connecting to another molecules or partitions by mean of "click chemistry" i.e. [1,3] copperI catalyzed dipolar cycloaddition between azide and acetylene. In this thesis two ligands, its complexes with some lanthanides as well as its precursors were prepared and characterized. Gd3+ complexes will be further used and studied for potential MRI contrast agents applications.
|
5 |
Synthesen und Strukturen neuer Lanthanoid- und Quecksilberkomplexe mit polyfunktionellen Ligandensystemen / Synthesis and structure of new lanthanoids and mercury complexes with polyfunctional ligandsystemsLabahn, Thomas 30 October 2002 (has links)
No description available.
|
Page generated in 0.0345 seconds