• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 3
  • 3
  • Tagged with
  • 42
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

IR/UV Double-Resonance Spectroscopy of Reactive Hydrocarbon Species and their Reaction Products in Cold Molecular Jets / IR/UV Doppelresonanz-Spektroskopie von Reaktiven Kohlenwasserstoffspezies und ihren Reaktionsprodukten in kalten Molekularstrahlen

Hirsch, Florian January 2021 (has links) (PDF)
Reactive hydrocarbon species are important in a multitude of different scientific areas. In this thesis, the vibrational spectra of hydrocarbon radicals, biradicals and their reaction product have been studied in a gas-phase environment. The specific molecules investigated here, are of particular importance in the field of combustion and astrochemistry. They were produced from suitable precursors in a pyrolytically heated micro-reactor and subsequently seeded in an appropriate carrier gas. As methodology, IR/UV ion dip spectroscopy has been utilized, which delivers massselected gas-phase IR spectra of all ionizable species detectable in the molecular beam. These, with the help of DFT calculations, allow for determination of the fingerprint IR spectra, identification of mass carriers and formulation of potential reaction mechanisms. All studies have been conducted in collaboration with the group of Prof. Dr. Anouk M. Rjis and the necessary potent IR radiation has been provided by the free-electron laser FELIX. Thus, the IR/UV measurements have been executed at the FELIX Laboratory of the Radboud University in Nijmegen. The first study presented in this thesis is the investigation of ortho-benzyne in Chapter 3.1. This molecule is of particular interest due to its uncommon electronic structure and its role in high-temperature reactions. Although, the infrared spectrum of o-C6H4 was not accessible, a number of reaction products were identified via their fingerprint spectra. Masses in the range from 78 - 228 were assigned to their respective carrier. The identified species include typical PAHs like naphthalene, phenanthrene, up to triphenylene. The identified masses further suggest a PAH growth heavily influenced by diradical 1,4-cycloaddition followed by fragmentation, as well as by classical HACA- and PAC-like mechanisms. These results were augmented by threshold photoionization measurements from Engelbert Reusch, who identified lighter reaction products, which have insufficient IR absorption or unsuitable ionization characteristics to be identified in the IR/UV experiment. An interesting observation is the identification of m/z = 152. This carrier has been assigned differently by the IR and TPES experiments. Whereas the IR spectrum clearly identifies the species as 2-ethynylnaphthalene, the TPES evidently is in great agreement with biphenylene. This is a good example how different experimental methodologies can benefit from each other to gain a deeper insight into the actual science of a particular system. Probably, the prime example for an aromatically resonance stabilized radical is benzyl. This radical is of high importance for many combustion studies, as it represents the primary high-temperature decomposition product of toluene. The goal of the study was the identification of the benzyl self reaction products and the results are discussed in Section 3.2. The radical was pyrolytically produced by its respective nitrite precursor. The mass spectrum showed that the benzyl self reaction formed two products with C11 and three with C14 constitution. All mass peaks were evenly spaced by two mass units, respectively, which suggests a close relation in formation. Indeed, the C11 products were identified as diphenylmethane and fluorene, which are simply connected via cyclization. The heaviest product was identified as phenanthrene, which is formed via the cyclization of bibenzyl to 9,10-dihydrophenanthrene and subsequent elimination of hydrogen. This result was quiet interesting as the intermediate of this reaction was often assumed to be stilbene, which was not observed in the study. Hence, the reaction seems to undergo cyclization first before phenanthrene is finally formed via hydrogen elimination. Expanding the molecular frame of benzyl by an additional methyl group leads to the xylyl radicals and its decomposition product the xylylenes. Also important in combustion research, xylyl radicals represent the preferred decomposition products of xylene, a frequently used anti-knock agent in modern gasoline blends. After further hydrogen elimination the xylyl radicals can then form their respective xylylenes. The results of the xylyl experiments are discussed in Section 3.3. Here the gas-phase vibrational spectrum in the fingerprint region for all three isomers has been recorded for the first time in isolation. Although, all isomers have a very similar structure and symmetry, and consequently similar vibrational bands, the resolution of the experimental data was exceedingly sufficient for a clear assignment. Additionally, the dimerization products of meta- and para-xylyl could also be identified. A similar approach was taken to determine the fingerprint spectra for the xylylenes. Here, only para-xylylene could be unambiguously identified as the carrier of mass 104. For both ortho- and meta-xylylene precursors, only isomerization products were observed as the carriers of mass 104; benzocyclobutene and styrene, respectively. A possible explanation is elaborated upon in the troubleshooting Sec- tion 3.4.3.5. In the final experimental section a study on the decomposition of phthalide is presented. The objective of this experiment was mainly focused around the formation of C7 species, particularly the fulvenallenyl radical C7H5. In fact, the first experimental fingerprint spectrum of isolated C7H5 in the gas-phase was measured and is displayed in Fig. 3.45. Furthermore, the experiment demonstrates that the pyrolysis products of phthalide are excellent soot precursors, as many heavier reaction products have been identified. These include typical PAH species like naphthalene and phenanthrene as well as their methylated isomers. A large number of molecules with terminal ethynyl moieties indicate a strong influence of HACA growth in the experimental environment. However, many formation pathways of products have been discussed, which are formed involving experiment specific species, like C5H5 and C7H5, and often include expansion steps from 5- to 6-membered rings. / Reaktive Kohlenwasserstoffe spielen eine wichtige Rolle in vielen wissenschaftlichen Bereichen. In der vorliegenden Dissertation wurden die schwingungsspektroskopischen Eigenschaften von Kohlenwasserstoffradikalen, Biradikalen und ihren Reaktionsprodukten in der Gasphase untersucht. Die Spezies, die in den Studien dieser Arbeit untersucht wurden, spielen eine besondere Rolle im Bereich der Verbrennungs- und Astrochemie. Sie wurden aus geeigneten Vorläufern pyrolytisch in einem beheizten Mikroreaktor hergestellt und anschließend mit einem passenden Trägergas in die Gasphase überführt. Als spektroskopische Methode wurde IR/UV Ionen-Dip Spektroskopie verwendet. Diese liefert massenselektive Schwingungsspektren von allen in einem Molekularstrahl ionisierbaren und detektierbaren Spezies. Dies erlaubt es, mit Hilfe von DFT Rechnungen die Schwingungsspektren der isolierten Moleküle zu messen, diese zu identifizieren und auch Rückschlüsse auf die Reaktionsmechanismen zu ziehen. Alle Experimente dieser Thesis wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Anouk M. Rijs durchgeführt. Hierbei wurde als hochbrillante IR-Quelle der Freie-Elektronenlaser FELIX der Radboud University in Nijmegen verwendet. Die erste Studie in Kapitel 3.1 beschäftigte sich mit Untersuchungen des ortho- Benzins. Dieses Molekül ist von besonderer Bedeutung aufgrund seiner ungewöhnlichen elektronischen Struktur und seiner Rolle bei Hochtemperaturreaktionen. Obwohl das IR Spektrum des o-C6H4 nicht ermittelt werden konnte, war es möglich einige Reaktionsprodukte anhand ihrer Schwingungsspektren zu identifizieren. Massensignale im Bereich von 78 - 228 amu wurden hierbei ihren jeweiligen Molekülen zugeordnet. Hierzu zählen typische PAHs wie Naphthalen, Phenanthren, bis zu Triphenylen. Die identifizierten Spezies legten des Weiteren nahe, dass das PAH Wachstum zum größten Teil durch diradikalische 1,4-Cycloaddition mit anschließender Fragmentierung, sowie HACA und PAC Mechanismen dominiert sein dürfte. Diese Ergebnisse wurden mit Photoionisationsstudien von Engelbert Reusch vervollständigt, welcher weitere leichtere Reaktionsprodukte identifizieren konnte, die eine unzureichende IR Absorption oder ungeeignete Ionisationseigenschaften aufweisen. Eine besonders interessante Erkenntnis stellt die Identifizierung von Masse 152 dar. Der Träger dieser Masse wurde durch die IR und TPES Experimente unterschiedlich zugeordnet. Hierbei wurde die Masse durch die Schwingungsspektren der IR/UV Experimente als 2-Ethinylnaphthalen identifiziert. Die TPES Spektren jedoch zeigten eine große Übereinstimmung der experimentellen Daten mit Biphenylen. Somit war diese Studie ein hervorragendes Beispiel dafür, wie unterschiedliche Methoden sich gegenseitig ergänzen können, um einen besseren Einblick in ein bestimmtes System zu erhalten. Benzyl ist womöglich das beste Musterbeispiel für ein aromatisch resonanzstabilisiertes Radikal. Dieses ist von großer Bedeutung in vielen Verbrennungsstudien, da es das primäre hochtemperatur Zerfallsprodukt von Toluol darstellt. Das Ziel dieser Studie war die Identifizierung der Benzyl Selbstreaktionsprodukte und ihre Ergebnisse wurden in Kapitel 3.2 präsentiert. Das Radikal wurde pyrolytisch aus dem jeweiligen Nitritvorläufer hergestellt. Das Massenspektrum zeigte, dass zwei Produkte mit C11 und drei Produkte mit C14 Zusammensetzung entstanden. Alle Massensignale waren gleichmäßig mit einem Abstand von zwei Masseneinheiten verteilt, was eine enge Beziehung der Spezies im Hinblick auf ihre Bildung nahe legt. So wurden die zwei C11 Spezies als Diphenylmethan und Fluoren identifiziert, welche über Zyklisierung miteinander in Verbindung stehen. Das schwerste Produkt im Experiment konnte als Phenanthren identifiziert werden, welches durch die Zyklisierung von Bibenzyl zu 9,10-Dihydrophenantren und anschließender Wasserstoffeliminierung entsteht. Diese Erkenntnis war von besonderer Relevanz, da bisher oft davon ausgegangen wurde, dass das Zwischenprodukt dieser Reaktion Stilben sein müsste; was allerdings in dieser Studie nicht beobachtet wurde. Folglich scheint der erste Schritt dieser Reaktion eine Zyklisierung zu sein und die Wasserstoffeliminierung findet erst im zweiten Schritt statt, wobei Phenanthren gebildet wird. Wenn Benzyl um eine zusätzliche Methyl-Einheit erweitert wird, erhält man die Gruppe der Xylylradikale und ihrer Zerfallsprodukte, den Xylylenen. Diese Moleküle sind ebenfalls von besonderem Interesse in der Verbrennungsforschung, da Xylylradikale das primäre Hochtemperaturprodukt der Wasserstoffeliminierung von Xylolen sind. Xylyole werden häufig in Kraftstoffen als Anti-Klopfmittel eingesetzt und stellen häufig einen großen Anteil dieser dar. Eine weitere Eliminierung von Wasserstoff liefert anschließend die jeweiligen Xylylene. Die Ergebnisse dieser Experimente wurden in Kapitel 3.3 diskutiert. Hierbei wurde das Gasphasen-IR-Fingerprintspektrum aller Xylyl-Isomere in Isolation zum ersten mal ermittelt. Obwohl alle Isomere eine sehr ähnliche Struktur und Symmetrie aufweisen und die resultieren Schwingungsmoden ebenfalls sehr ähnlich sind, war die Auflösung der experimentellen Daten ausreichend für eine eindeutige Zuordnung. Zusätzlich wurden ebenfalls die Dimerisierungsprodukte von meta- und para-Xylyl beobachtet und identifiziert. Eine ähnliche Herangehensweise wurde angewandt, um die Schwingungsspektren der Xylylene zu bestimmen. Hierbei konnte jedoch nur das IR-Spektrum von para-Xylylen als Träger der Masse 104 bei der Pyrolyse des jeweiligen Vorläufers eindeutig identifiziert werden. Für beide Vorläufer der ortho- und meta-Xylylen Experimente konnten lediglich Isomerisierungsprodukte als Träger von m/z = 104 festgestellt werden: Benzocyclobuten und Stilben. Mögliche Gründe für diese Ergebnisse wurden in Kapitel 3.4.3.5 erläutert. Im letzten Teil wurden die Arbeiten zur Zersetzung von Phthalid präsentiert. Das Ziel dieser Studie war die Erzeugung und Charakterisierung von C7 Spezies, insbesondere das Fulvenallenyl Radikal C7H5. Hierbei konnte das erste Gasphasen- Fingerprint-IR-Spektrum von isoliertem C7H5 ermittelt werden, welches in Fig. 3.45 zu sehen ist. Des Weiteren zeigte die Studie, dass Phthalid ein hervorragender Rußvorläufer ist, da eine große Anzahl weiterer Reaktionsprodukte identifiziert werden konnte. Diese beinhalten typische PAHs wie Naphthalen und Phenanthren, sowie ihre methylierten Isomere. Eine große Vielzahl von Molekülen mit terminalen Ethinylseitenketten deuten auf einen großen Einfluss von HACA ähnlichem PAH Wachstum hin. Hierbei wurden insbesondere Reaktionsmechanismen diskutiert, welche experimentspezifische Reaktionsprodukte, wie C5H5 und C7H5, beinhalten und oft Ringexpansionen von 5- zu 6-gliedrigen Ringen aufweisen.
32

Excited-State Dynamics in Open-Shell Molecules / Dynamik angeregter Zustände von offenschaligen Molekülen

Röder, Anja M. January 2017 (has links) (PDF)
In this thesis the excited-state dynamics of radicals and biradicals were characterized with femtosecond pump-probe spectroscopy. These open-shell molecules play important roles as combustion intermediates, in the formation of soot and polycyclic aromatic hydrocarbons, in atmospheric chemistry and in the formation of complex molecules in the interstellar medium and galactic clouds. In these processes molecules frequently occur in some excited state, excited either by thermal energy or radiation. Knowledge of the reactivity and dynamics of these excited states completes our understanding of these complex processes. These highly reactive molecules were produced via pyrolysis from suitable precursors and examined in a molecular beam under collision-free conditions. A first laser now excites the molecule, and a second laser ionizes it. Time-of-flight mass spectrometry allowed a first identification of the molecule, photoelectron spectroscopy a complete characterization of the molecule - under the condition that the mass spectrum was dominated by only one mass. The photoelectron spectrum was obtained via velocity-map imaging, providing an insight in the electronic states involved. Ion velocity map imaging allowed separation of signal from direct ionization of the radical in the molecular beam and dissociative photoionization of the precursor. During this thesis a modified pBasex algorithm was developed and implemented in python, providing an image inversion tool without interpolation of data points. Especially for noisy photoelectron images this new algorithm delivers better results. Some highlighted results: • The 2-methylallyl radical was excited in the ππ*-state with different internal energies using three different pump wavelengths (240.6 , 238.0 and 236.0 nm). Ionized with 800 nm multi-photon probe, the photoelectron spectra shows a s-Rydberg fingerprint spectrum, a highly positive photoelectron anisotropy of 1.5 and a bi-exponential decay ( τ1= 141\pm43 fs, τ2= 4.0\pm0.2 ps for 240.6 nm pump), where the second time-constant shortens for lower wavelengths. Field-induced surface hopping dynamics calculations confirm that the initially excited ππ*-state relaxes very fast to an s-Rydberg state (first experimentally observed time-constant), and then more slowly to the first excited state/ground state (second time-constant). With higher excitation energies the conical intersection between the s-Rydberg-state and the first excited state is reached faster, resulting in shorter life-times. • The benzyl radical was excited yith 265 nm and probed with two wavelengths, 798 nm and 398 nm. Probed with 798 nm it shows a bi-exponential decay (\tau_{1}=84\pm5 fs, \tau_{2}=1.55\pm0.12 ps), whereas with 398 nm probe only the first time-constant is observed (\tau_{1}=89\pm5 fs). The photoelectron spectra with 798 nm probe is comparable to the spectrum with 398 nm probe during the first 60 fs, at longer times an additional band appears. This band is due to a [1+3']-process, whereas with 398 nm only signal from a [1+1']-process can be observed. Non-adiabatic dynamic on the fly calculations show that the initially excited, nearly degenerate ππ/p-Rydberg-states relax very fast (first time-constant) to an s-Rydberg state. This s-Rydberg state can no longer be ionized with 398 nm, but with 798 nm ionization via intermediate resonances is still possible. The s-Rydberg state then decays to the first excited state (second time-constant), which is long-lived. • Para-xylylene, excited with 266 nm into the S2-state and probed with 800 nm, shows a bi-exponential decay (\tau_{1}=38\pm7 fs, \tau_{2}=407\pm9 fs). The initially excited S2-state decays quickly to S1-state, which shows dissociative photoionization. The population of the S1-state is directly visible in the masses of the dissociative photoionization products, benzene and the para-xylylene -H. • Ortho-benzyne, produced via pyrolysis from benzocyclobutendione, was excited with 266 nm in the S2 state and probed with 800 nm. In its time-resolved mass spectra the dynamic of the ortho-benzyne signal was superposed with the dynamics from dissociative photoionization of the precursor and of the ortho-benzyne-dimer. With time-resolved ion imaging gated on the ortho-benzyne these processes could be seperated, showing that the S2-state of ortho-benzyne relaxes within 50 fs to the S1-state. / In der vorliegenden Dissertation wurde die Dynamik angeregter Zustände von Radikalen und Biradikalen mittels femtosekunden-zeitaufgelöster Anrege-Abfragespektroskopie untersucht. Radikale und Biradikale sind nicht nur wichtige Zwischenprodukte in Verbrennungsprozessen, sondern auch bei der Bildung von Ruß und polyzyklischen aromatischen Kohlenwasserstoffen beteiligt. Des Weiteren spielen sie eine wichtige Rolle in der Atmosphärenchemie und bei der Bildung komplexer Moleküle im interstellaren Medium. Von entscheidender Bedeutung ist in den genannten Prozessen die Anregung der Radikalen und Biradikale in energetisch höhere Zustände, dies geschieht entweder durch thermische Energie oder mittels Strahlung. Für das Verständnis der ablaufenden Vorgänge ist es zwingend erforderlich die Dynamik der angeregten Zu\-stände zu verstehen. Die Radikale und Biradikale wurden dafür mittels Pyrolyse eines geeigneten Vorläufers erzeugt, und anschließend unter kollisionsfreien Bedingungen im Molekularstrahl spektroskopisch untersucht. Hierbei regt ein erster Laser das Molekül an, ein zweiter Laser ionisiert es. Mittels Flugzeitmassenspektrometrie wurden die Moleküle identifiziert, und mittels Photoelektronenspektroskopie weiter charackterisiert - unter der Bedingung, dass im Massenspektrum eine Masse dominiert. Das Photoelektronenspektrum wurde mittels Velocity-Map Imaging aufgenommen und gibt einen Einblick in den elektronischen Zustand im Augenblick der Ionisations. Die Velocity-Map Imaging-Technik von Ionen erlaubt außerdem die Unterscheidung von Ionen aus direkter Ionisation und dissoziativer Photoionisation. In diesem Rahmen wurde auch ein modifizierter pBasex-Algorithmus entwickelt und in Python implementiert. Dieser kommt im Gegensatz zum herkömmlichen pBasex-Algorithmus komplett ohne Interpolation der Datenpunkte aus. Besonders bei verrauschten Photoelektronenspektren liefert dieser Algorithmus bessere Ergebnisse. Einige Resultate sollten besonders hervorgehoben werden: • Das 2-Methylallylradikal wurde in einen ππ*-Zustand mit drei verschiedenen Anregungswellenängen (240.6, 238.0 und 236.0 nm) angeregt, um eine Variation der inneren Energie innerhalb dieses Zustandes zu ermöglichen. Es wurde mit bis zu drei 800-nm-Photonen ionisiert. Das Photoelektronenspektrum zeigt ein s-Rydberg-photo\-elektronenspektrum, eine positive Photoelektronenanisotropie von 1.5 sowie einen biexponentiellen Zerfall (τ1= 141\pm43 fs, τ2= 4.0\pm0.2 ps für 240.6 nm als Anregelaser). Die zweite Zeitkonstante verkürzt sich mit kürzeren Wellenlängen. Field-induced surface hopping Dynamikrechungen bestätigen, dass der ursprünglich angeregte ππ*-Zustand schnell in einen s-Rydbergzustand relaxiert (erste Zeitkonstante), um dann anschließend langsamer in den ersten angeregten Zustand zu relaxieren (zweite Zeitkonstante). Mit einer höheren inneren Energie wird die konische Durchschneidung zwischen dem s-Rydbergzustand und dem ersten angeregten Zustand schneller erreicht, somit verkürzt sich die zweite Zeitkonstante bei kürzeren Wellenlängen. • Das Benzylradikal zeigt in einem 265 nm Anrege-/798 nm Abfrageexperiment einen biexponentiellen Zerfall (\tau_{1}=84\pm5 fs, \tau_{2}=1.55\pm0.12 ps), wohingegen mit 398 nm lediglich ein monoexponentieller Zerfall sichtbar ist (\tau_{1}=89\pm5 fs). Das 798 nm Abfrage-Photoelektronenspektrum ist in den ersten 60 fs ähnlich dem 398 nm Abfrage-Photoelektronenspektrum, bei späteren Zeiten erscheint eine weitere Bande bei höheren kinetischen Energien der Elektronen. Diese Bande stammt aus einem [1+3']-Prozess, während bei 398 nm nur Signal aus einem [1+1']-Prozess beobachtbar ist. Laut nichtadiabatische Dynamikrechungen relaxiert der ursprünglich angeregte ππ-Zustand bzw. der fast energiegleiche p-Rydbergzustand sehr schnell in einen s-Ryd\-berg\-zu\-stand (erste Zeitkonstante), welcher mit 798 nm über intermediäre Resonanzen noch ionisiert werden kann, aber nicht mehr mit 398 nm. Anschließend relaxiert der s-Ryd\-berg\-zu\-stand in den ersten angeregten, langlebigen Zustand (zweite Zeitkonstante). • Para-Xylylen wurde mit 266 nm in den S2-Zustand angeregt und mit 800 nm in einem Multiphotonenprozess ionisiert. Es zeigt einen biexponentialen Zerfall (\tau_{1}=38\pm7 fs, \tau_{2}=407\pm9 fs). Der ursprünglich angeregte S2-Zustand relaxiert schnell in den S1-Zustand, welcher im Ion dissoziert. Somit lässt sich die Besetzung des S1-Zustands direkt an den Signalen der Dissoziationsprodukte Benzol und dem Wasserstoffabstraktionsprodukt von para-Xylylen verfolgen. • Ortho-Benzin wurde via Pyrolyse des Vorläufers Benzocyclobuten-1,2,-dion hergestellt, mit 266 nm in den S2-Zustand angeregt und mit 800 nm ionisiert. In den zeitaufgelösten Massenspektren wird die Dynamik des ortho-Benzinsignals durch die dissoziative Photoionisationdynamik des Vorläufers und des ortho-Benzindimers überlagert. Mittels zeitaufgelöste Ionenspektren vom ortho-Benzin konnten diese Prozesse voneinander getrennt werden, und es konnte gezeigt werden, dass der S2-Zustand von ortho-Benzin innerhalb von 50 fs in den S1-Zustand relaxiert. / Dans cette thèse, la dynamique des états excités des radicaux et biradicaux a été examinée en utilisant la spectroscopie pompe-sonde résolue en temps à l'échelle femto-seconde. Les molécules à couche ouverte jouent un rôle primordial comme intermédiaires dans les processus de combustion, dans la formation de la suie et des hydrocarbures aromatiques polycycliques, dans la chimie atmosphérique ou dans la formation des molécules organiques complexes du milieu interstellaire et des nuages galactiques. Dans tous ces processus les molécules sont souvent excitées, soit par échauffement thermique, soit par irradiation. En conséquence la réactivité et la dynamique de ces états excités sont particulièrement intéressantes afin d'obtenir une compréhension globale de ces processus. Dans ce travail les radicaux et biradicaux ont été produits par pyrolyse à partir de molécules précurseur adaptées et ont été examinés dans un jet moléculaire en absence de collisions. Les radicaux sont ensuite portés dans un état excité bien défini, et ionisés avec un deuxième laser. La spectrométrie de masse à temps de vol permet une première identification de la molécule. Via des spectres de photoélectrons la molécule est characterisée, pourvu que le spectre de masse ne montre majoritairement qu'une seule masse. Les spectres de photoélectrons ont été obtenus par l'imagerie de vitesse, permettant d'obtenir des informations sur l'état électronique du radical au moment de l'ionisation. L'imaginerie de vitesse des ions permet de distinguer les ions issus d'une ionisation directe et ceux issus d'une ionisation dissociative. Pendant cette thèse un algorithme modifié de pBasex a été développé et implémenté en langage python: cet algorithme inverse des images sans interpolation des points expérimentaux, il montre une meilleure performance pour le traitement des images bruités. Pour des images bruitées cet algorithme montre une meilleure performance. Quelques résultats sélectionnés: • Le radical de 2-méthylallyle a été excité dans l'état ππ* avec différentes énergies internes en utilisant trois différentes longueurs d'onde de pompe (240.6, 238.0 et 236.0 nm). Après ionisation par un laser 800 nm selon un processus multi-photonique, le spectre de photoélectrons montre le charactéristiques d'un état de Rydberg, une anisotropie des photoélectrons proche de 2 et un déclin biexponentiel (τ1= 141\pm43 fs, τ2= 4.0\pm0.2 ps avec 240.6 nm comme pompe). La deuxième constante de temps se réduit si la longueur d'onde de la pompe diminue. Des calculs de dynamique de saut de surface induite par champ confirment que l'état ππ* initialement excité relaxe très vite dans un état de Rydberg s (première constante de temps expérimentale), qui se relaxe ensuite plus lentement vers le premier état excité (deuxième constante de temps). Avec une excitation plus énergétique, cette intersection conique est atteinte plus vite, de sorte que la seconde constante de temps diminue. • Le radical de benzyle montre un déclin biexponentiel lorsqu'il est excité avec 265 nm et sondé avec 798 nm (\tau_{1}=84\pm5 fs, \tau_{2}=1.55\pm0.12 ps); si on sonde avec 398 nm un seul déclin est mesuré (\tau_{1}=89\pm5 fs). Le spectre de photoélectrons obtenu avec 798 nm comme sonde est comparable à celui avec 398 nm sonde pendant les premières 60 fs. À des temps plus longs une autre bande apparaît, issue d'un processus [1+3'], tandis qu'avec 398 nm seul le processus [1+1'] est visible. Des simulations non-adiabatique de la dynamique montrent que l'état ππ initialement excité relaxe vers un état de Rydberg s (première constante de temps). L'état de Rydberg s ne peut plus être ionisé avec un photon de 398 nm; mais 798 nm l'ionise avec 3 photons en passant par des états intermédiaires. Cet état de Rydberg s se relaxe vers le premier état excité (deuxième constante de temps). • Le para-xylylène a été excité avec 266 nm dans l'état S2. Sondé avec 800 nm, il montre un déclin biexponentiel (\tau_{1}=38\pm7 fs, \tau_{2}=407\pm9 fs). L'état S2 initialement excité se relaxe très vite dans l'état S1, qui se dissocie une fois ionisé. La population de l'état S1 peut donc être directement suivie par l'évolution de ses produits de dissociation, le benzène et le produit d'abstraction d'un hydrogène. • Ortho-benzyne, produit via pyrolyse de benzocyclobutendione, a été excité dans l'état S2 avec 266 nm et ionisé avec 800 nm. Dans les spectres de masse résolus en temps, la dynamique de l'ortho-benzyne a été altérée par la dynamique de photoionisation dissociative du precurseur et du dimère de l'ortho-benzyne. Ces deux processus ont pu néanmoins être différienciés par l'imagerie d'ion d'ortho-benzyne, montrant que l'état S2 d'ortho-benzyne se relaxe vers l'état S1 en 50 fs.
33

Solvatation eines Coumarinfarbstoffes in Gemischen aus Alkanen und Alkoholen

Cichos, Frank 10 August 1998 (has links) (PDF)
Diese Arbeit charakterisiert die Solvatation des organischen Farbstoffes Coumarin 153 in Gemischen aus jeweils einem Alkan und einem Alkohol. Dabei werden Methoden der statischen und zeitaufgeloesten optischen Spektroskopie sowie klassische molekulardynamische Simulationen fuer die Untersuchungen angewendet. Die experimentellen Ergebnisse zeigen, dass der Farbstoff im Gemisch selektiv durch den Alkohol solvatisiert ist. Die Staerke dieser Solvatation ist für den elektronischen Grund- und Anregungszustand des Farbstoffes unterschiedlich. Aus diesem Grund wird die Solvatationsdynamik in Alkohol/Alkan Gemischen durch einen Translationsdiffusionsprozess bestimmt. Die molekulardynamischen Simulationen veranschaulichen die selektive Solvatation des Coumarin 153 in einem Methanol/Hexan Gemisch. Die Solvathuelle enhaelt im Anregungszustand des Farbstoffes bis zu dreimal mehr Molekuele als im Grundzustand. Im Unterschied zur Solvatation in reinem Methanol spielen spezifische Bindungen wie Wasserstoffbrueckenbindungen in einem Methanol/Hexan Gemisch eine wesentliche Rolle.
34

Solvatation eines Coumarinfarbstoffes in Gemischen aus Alkanen und Alkoholen

Cichos, Frank, January 1998 (has links)
Chemnitz, Techn. Univ., Diss., 1998. / Teilw. u.d.T.: Solvatation eines Coumarinfarbstoffes in Gemischen aus Alkanen und Alkanolen.
35

Entwicklung eines miniaturisierten ballongetragenen Diodenlaser-Spektrometers zur Messung von stratosphärischen Methan- und Wasserdampfkonzentrationen

Zimmermann, Rainer. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Heidelberg.
36

Diodenlaser-gestützter In-situ-Nachweis von O2 und Alkaliatomen zur Optimierung der Hochtemperaturkohlenstaub- und Sondermüllverbrennung sowie der Brandbekämpfung

Schlosser, Eric. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Heidelberg.
37

Ein transienter Röntgenlaser zur Laserspektroskopie an Lithium-ähnlichen Ionen

Neumayer, Paul. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
38

Laserspektroskopische Untersuchungen zur Dynamik von ionischen Flüssigkeiten mit Hilfe molekularer Sonden / Laser spectroscopic studies of the dynamics of ionic liquids using molecular probes

Lohse, Peter William 12 October 2010 (has links)
No description available.
39

Solvatation eines Coumarinfarbstoffes in Gemischen aus Alkanen und Alkoholen

Cichos, Frank 19 June 1998 (has links)
Diese Arbeit charakterisiert die Solvatation des organischen Farbstoffes Coumarin 153 in Gemischen aus jeweils einem Alkan und einem Alkohol. Dabei werden Methoden der statischen und zeitaufgeloesten optischen Spektroskopie sowie klassische molekulardynamische Simulationen fuer die Untersuchungen angewendet. Die experimentellen Ergebnisse zeigen, dass der Farbstoff im Gemisch selektiv durch den Alkohol solvatisiert ist. Die Staerke dieser Solvatation ist für den elektronischen Grund- und Anregungszustand des Farbstoffes unterschiedlich. Aus diesem Grund wird die Solvatationsdynamik in Alkohol/Alkan Gemischen durch einen Translationsdiffusionsprozess bestimmt. Die molekulardynamischen Simulationen veranschaulichen die selektive Solvatation des Coumarin 153 in einem Methanol/Hexan Gemisch. Die Solvathuelle enhaelt im Anregungszustand des Farbstoffes bis zu dreimal mehr Molekuele als im Grundzustand. Im Unterschied zur Solvatation in reinem Methanol spielen spezifische Bindungen wie Wasserstoffbrueckenbindungen in einem Methanol/Hexan Gemisch eine wesentliche Rolle.
40

Measurements of local electric fields by doppler-free laser spectroscopy of hydrogen resonance lines

Adamov, Minja Gemisic 04 January 2007 (has links)
In dieser Arbeit wurde eine einfache laserspektroskopische Messmethode für lokale elektrische Feldstärken im Hinblick auf ihre Messmöglichkeiten und -grenzen untersucht. Als empfindliche optische Feldsensoren dienen dabei Wasserstoffatome, für die die Stark-Aufspaltung der Spektrallinien im elektrischen Feld wohl bekannt und exakt berechenbar ist. Die experimentellen Untersuchungen wurden an einer Niederdruck-Gaszelle durchgeführt, in der ein elektrisch geheizter Wolframdraht für thermische Dissoziation von Wasserstoffmolekülen sorgte. Die Wasserstoffatome wurden durch zwei gegenläufige Laserstrahlen Doppler-frei angeregt. Die Durchstimmung der schmalbandigen Laserstrahlung über den Wellenlängenbereich der Zwei-Photonen-Resonanz lieferte direkt das vom elektrischen Feld hervorgerufene Stark-Spektrum des angeregten Zustands. Weil die Methode im Gegensatz zu ähnlichen, erheblich aufwendigeren Verfahren nur die niedrigsten Wasserstoff-Energieniveaus benutzt, die mit Zwei-Photonen-Anregung direkt aus dem Grundzustand erreichbar sind, kommt sie mit einem einzigen Laser aus. Für das erste angeregte Niveau mit n = 2 wird Strahlung bei 243 nm benötigt, das nächsthöhere Niveau mit n = 3 erfordert 205 nm. Für n = 2 wurden Untersuchungen an Wasserstoff und Deuterium durchgeführt und Stark-Spektren mittels optogalvanischer Detektion gemessen. Schwerpunkt der Arbeit waren aber die Messungen an Wasserstoff für n = 3, bei denen zusätzlich Balmer-alpha-Fluoreszenz im Sichtbaren zur Detektion eingesetzt werden konnte. Bei elektrischen Feldern bis 200 V/cm wurden Stark-Spektren für drei verschiedene Polarisationszustände der Laserstrahlung aufgenommen. Als Ergebnis konnte jeweils ein Paar isolierter Stark-Komponenten in den Spektren identifiziert werden, dessen gut messbarer Frequenzabstand durch Vergleich mit theoretischen Werten die Bestimmung der elektrischen Feldstärke ermöglicht. / A method for electric field measurements that observes the Stark spectra of the low excited levels n = 2 and n = 3 of atomic hydrogen has been explored in this work. As advantage these levels can be excited Doppler-free from the ground state by a single laser and the highly resolved Stark spectra are easy to understand and to be calculated. Good sensitivity of electric field measurements is achieved with specially designed solid state laser systems, which provide tuneable pulsed UV radiation with a high pulse peak-power and a narrow bandwidth needed for Doppler-free two-photon excitation. Using hydrogen and deuterium the Stark spectra of the n = 2 level are detected as optogalvanic signal. For three different cases of laser polarization the n = 3 spectra of hydrogen are measured simultaneously with optogalvanic and laser induced Balmer alpha fluorescence detection. Electric fields down to 200 V/cm can be determined from the Stark spectra of n = 2 level, while the spectra of n = 3 level enable measurements of electric fields as small as 50 V/cm in each of the three cases of laser polarization.

Page generated in 0.0796 seconds