Spelling suggestions: "subject:"leaveone"" "subject:"leaveout""
1 |
Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systemsTseng, Hsin-Wu, Fan, Jiahua, Kupinski, Matthew A. 28 July 2016 (has links)
The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
|
2 |
Considerations for and Development of Sound Level Maps for the M16A4 RifleRasband, Reese D. 08 August 2022 (has links)
Small firearms can create sound levels exceeding the safe threshold of human hearing with even one shot. Understanding how the sound propagates will lead to better range and military drill design. This thesis describes errors associated with different predictive interpolation models for the M16A4. Before directly discussing potential sources of error, the thesis first seeks to validate the data acquired. This is done through waveform inspection with a focus on shot-to-shot consistency. Finding the standard deviation in level between a 10-shot volley provides a good baseline with which other sources of error can be compared to. For both peak and 8-hour A-weighted equivalent levels, the deviation tended to be 1-1.2 dB. With this constraint in mind, the thesis then discussions potential error of measurements along the radial arc. By comparing nearest neighbor microphones with measured values, it was determined that a finer resolution behind the shooter is most relevant. Second, radial propagation was plotted to justify potential decay rates for further plotting. A model of spherical spreading is reasonable, but overestimates the level at farther distances e.g. 50 m. Lastly the thesis focuses on interpolation mapping to predict levels around the range. The baseline model was created using a Cartesian interpolation scheme that uses ghost points to help limit potential artifacts. Leave-one-out analysis highlighted a necessity of microphone placement behind the shooter and other less important microphones. Use of symmetry across the firing direction provides excellent results, generally below the 1 dB standard deviation. In the end, a best-practices guideline is given, which reduces number of required microphones by half. Through these analyses, future measurements will be more effective in microphone placement. With these level maps, one will also be able to better determine potential hearing risks associated with small firearm use and even avoid them through better drill.
|
3 |
Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in GenomicsZollanvari, Amin 2010 December 1900 (has links)
Error estimation must be used to find the accuracy of a designed classifier, an issue that is critical in biomarker discovery for disease diagnosis and prognosis in genomics and proteomics. This dissertation is concerned with the analytical formulation of the joint distribution of the true error of misclassification and two of its commonly used estimators, resubstitution and leave-one-out, as well as their marginal and mixed moments, in the context of the Linear Discriminant Analysis (LDA) classification rule. In the first part of this dissertation, we obtain the joint sampling distribution of the actual and estimated errors under a general parametric Gaussian assumption. Exact results are provided in the univariate case and an accurate approximation is obtained in the multivariate case. We show how these results can be applied in the computation of conditional bounds and the regression of the actual error, given the observed error estimate. In practice the unknown parameters of the Gaussian distributions, which figure in the expressions, are not known and need to be estimated. Using the usual maximum-likelihood estimates for such parameters and plugging them into the theoretical exact expressions provides a sample-based approximation to the joint distribution, and also sample-based methods to estimate upper conditional bounds. In the second part of this dissertation, exact analytical expressions for the bias, variance, and Root Mean Square (RMS) for the resubstitution and leave-one-out error estimators in the univariate Gaussian model are derived. All probabilistic characteristics of an error estimator are given by the knowledge of its joint distribution with the true error. Partial information is contained in their mixed moments, in particular, their second mixed moment. Marginal information regarding an error estimator is contained in its marginal moments, in particular, its mean and variance. Since we are interested in estimator accuracy and wish to use the RMS to measure that accuracy, we desire knowledge of the second-order moments, marginal and mixed, with the true error. In the multivariate case, using the double asymptotic approach with the assumption of knowing the common covariance matrix of the Gaussian model, analytical expressions for the first moments, second moments, and mixed moment with the actual error for the resubstitution and leave-one-out error estimators are derived. The results provide accurate small sample approximations and this is demonstrated in the present situation via numerical comparisons. Application of the results is discussed in the context of genomics.
|
4 |
Image Classification For Content Based IndexingTaner, Serdar 01 December 2003 (has links) (PDF)
As the size of image databases increases in time, the need for content based image indexing and retrieval become important. Image classification is a key to content based image indexing. In this thesis supervised learning with feed forward back propagation artificial neural networks is used for image classification. Low level features derived from the images are used to classify the images to interpret the high level features that yield semantics. Features are derived using detail histogram correlations obtained by Wavelet Transform, directional edge information obtained by Fourier Transform and color histogram correlations. An image database consisting of 357 color images of various sizes is used for training and testing the structure. The database is indexed into seven classes that represent scenery contents which are not mutually exclusive. The ground truth data is formed in a supervised fashion to be used in training the neural network and testing the performance. The performance of the structure is tested using leave one out method and comparing the simulation outputs with the ground truth data. Success, mean square error and the class recall rates are used as the performance measures. The performances of the derived features are compared with the color and texture descriptors of MPEG-7 using the structure designed. The results show that the performance of the method is comparable and better. This method of classification for content based image
indexing is a reliable and valid method for content based image indexing and retrieval, especially in scenery image indexing.
|
5 |
Artificial neural network modeling of flow stress response as a function of dislocation microstructuresAbuOmar, Osama Yousef 11 August 2007 (has links)
An artificial neural network (ANN) is used to model nonlinear, large deformation plastic behavior of a material. This ANN model establishes a relationship between flow stress and dislocation structure content. The density of geometrically necessary dislocations (GNDs) was calculated based on analysis of local lattice curvature evolution. The model includes essential statistical measures extracted from the distributions of dislocation microstructures, including substructure cell size, wall thickness, and GND density as the input variables to the ANN model. The model was able to successfully predict the flow stress of aluminum alloy 6022 as a function of its dislocation structure content. Furthermore, a sensitivity analysis was performed to identify the significance of individual dislocation parameters on the flow stress. The results show that an ANN model can be used to calibrate and predict inelastic material properties that are often cumbersome to model with rigorous dislocation-based plasticity models.
|
6 |
Bank Customer Churn Prediction : A comparison between classification and evaluation methodsTandan, Isabelle, Goteman, Erika January 2020 (has links)
This study aims to assess which supervised statistical learning method; random forest, logistic regression or K-nearest neighbor, that is the best at predicting banks customer churn. Additionally, the study evaluates which cross-validation set approach; k-Fold cross-validation or leave-one-out cross-validation that yields the most reliable results. Predicting customer churn has increased in popularity since new technology, regulation and changed demand has led to an increase in competition for banks. Thus, with greater reason, banks acknowledge the importance of maintaining their customer base. The findings of this study are that unrestricted random forest model estimated using k-Fold is to prefer out of performance measurements, computational efficiency and a theoretical point of view. Albeit, k-Fold cross-validation and leave-one-out cross-validation yield similar results, k-Fold cross-validation is to prefer due to computational advantages. For future research, methods that generate models with both good interpretability and high predictability would be beneficial. In order to combine the knowledge of which customers end their engagement as well as understanding why. Moreover, interesting future research would be to analyze at which dataset size leave-one-out cross-validation and k-Fold cross-validation yield the same results.
|
7 |
Atrial Fibrillation Detection Algorithm Evaluation and Implementation in Java / Utvärdering av algoritmer för detektion av förmaksflimmer samt implementation i JavaDizon, Lucas, Johansson, Martin January 2014 (has links)
Atrial fibrillation is a common heart arrhythmia which is characterized by a missing or irregular contraction of the atria. The disease is a risk factor for other more serious diseases and the total medical costs in society are extensive. Therefore it would be beneficial to improve and optimize the prevention and detection of the disease. Pulse palpation and heart auscultation can facilitate the detection of atrial fibrillation clinically, but the diagnosis is generally confirmed by an ECG examination. Today there are several algorithms that detect atrial fibrillation by analysing an ECG. A common method is to study the heart rate variability (HRV) and by different types of statistical calculations find episodes of atrial fibrillation which deviates from normal sinus rhythm. Two algorithms for detection of atrial fibrillation have been evaluated in Matlab. One is based on the coefficient of variation and the other uses a logistic regression model. Training and testing of the algorithms were done with data from the Physionet MIT database. Several steps of signal processing were used to remove different types of noise and artefacts before the data could be used. When testing the algorithms, the CV algorithm performed with a sensitivity of 91,38%, a specificity of 93,93% and accuracy of 92,92%, and the results of the logistic regression algorithm was a sensitivity of 97,23%, specificity of 93,79% and accuracy of 95,39%. The logistic regression algorithm performed better and was chosen for implementation in Java, where it achieved a sensitivity of 97,31%, specificity of 93,47% and accuracy of 95,25%. / Förmaksflimmer är en vanlig hjärtrytmrubbning som kännetecknas av en avsaknad eller oregelbunden kontraktion av förmaken. Sjukdomen är en riskfaktor för andra allvarligare sjukdomar och de totala kostnaderna för samhället är betydande. Det skulle därför vara fördelaktigt att effektivisera och förbättra prevention samt diagnostisering av förmaksflimmer. Kliniskt diagnostiseras förmaksflimmer med hjälp av till exempel pulspalpation och auskultation av hjärtat, men diagnosen brukar fastställas med en EKG-undersökning. Det finns idag flertalet algoritmer för att detektera arytmin genom att analysera ett EKG. En av de vanligaste metoderna är att undersöka variabiliteten av hjärtrytmen (HRV) och utföra olika sorters statistiska beräkningar som kan upptäcka episoder av förmaksflimmer som avviker från en normal sinusrytm. I detta projekt har två metoder för att detektera förmaksflimmer utvärderats i Matlab, en baseras på beräkningar av variationskoefficienten och den andra använder sig av logistisk regression. EKG som kommer från databasen Physionet MIT används för att träna och testa modeller av algoritmerna. Innan EKG-signalen kan användas måste den behandlas för att ta bort olika typer av brus och artefakter. Vid test av algoritmen med variationskoefficienten blev resultatet en sensitivitet på 91,38%, en specificitet på 93,93% och en noggrannhet på 92,92%. För logistisk regression blev sensitiviteten 97,23%, specificiteten 93,79% och noggrannheten 95,39%. Algoritmen med logistisk regression presterade bättre och valdes därför för att implementeras i Java, där uppnåddes en sensitivitet på 91,31%, en specificitet på 93,47% och en noggrannhet på 95,25%.
|
Page generated in 0.0384 seconds