• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 3
  • 3
  • 1
  • Tagged with
  • 57
  • 57
  • 57
  • 57
  • 30
  • 15
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Strengths and limitations of bioretention sorbent amendments to simultaneously remove metals, PAHs, and nutrients from urban stormwater runoff

Esfandiar, Narges, 0000-0002-1528-7943 January 2022 (has links)
Bioretention is increasingly being employed as a stormwater management tool in urban areas, with the intent of using infiltration to address both water quantity and quality concerns. However, bioretention soil media (BSM) has limited removal capacity for dissolved contaminants; hence, amendments may be justified to improve performance. In this study, the potential of five low-cost sorbents as BSM amendments – waste tire crumb rubber (WTCR), coconut coir fiber (CCF), blast furnace slag (BFS), biochar (BC) and iron coated biochar (FeBC) – were investigated for removing several classes of contaminants from simulated stormwater (SSW). The contaminated SSW contained a mixture of metals (Cr, Cd, Cu, Pb, Ni and Zn), nutrients (ammonium, nitrate, and phosphate) and PAHs (pyrene (PYR), phenanthrene (PHE), acenaphthylene (ACY) and naphthalene (NAP)). First, batch studies were used to investigate the sorption capacities, kinetics, and the effects of different water quality parameters on sorbents performance. Then, a long-term vegetated column study was conducted to investigate the performance of three amendments (CCF, WTCR, and BFS) under intermittent runoff condition considering different runoff intensities and antecedent dry periods (ADP). The long-term effects of amendments on plant health and infiltration rate of all media were also investigated. Finally, HYDRUS-1D and a cost model were used to investigate longevity and cost-effectiveness of all BSM. Batch test results revealed that among all sorbents, BC and FeBC were only effective for removing PAHs; CFF had high sorption capacity for both metals and PAHs; BFS was very effective for metals; and WTCR was effective for some of metals and PAHs. Metal removal by BFS occurred primarily via precipitation was due to the BFS mineral structure and high/alkaline pH. The effectiveness of CCF for removing both metals and PAHs was due to its lignocellulose structure and diverse functional groups. CCF could remove metals through several mechanisms including cation exchange, complexation, and electrostatic attraction, and remove PAHs through hydrophobic interaction. Biochar in this study had a highly aromatic structure with less O-containing functional groups, and PAHs were sorbed through hydrophobic pi-pi interactions. The selectivity orders of sorbents for the removal of different metals and PAHs were Cr~Cu~Pb > Ni > Cd > Zn and PYR > PHE > ACY > NAP. This selectivity was mainly caused by differences in properties of metal ions (e.g., ionic radius, hydrogen energy, etc.) and PAHs (e.g., hydrophobicity). Phosphate was removed by BFS due to its Al, Fe and Ca contents, but the other sorbents were ineffective for nutrient removal. Metals sorption capacity of sorbents was greater at higher pH, lower salinity and lower DOC; however, PAHs sorption capacity of sorbents was generally not sensitive to water quality parameters. Column experiments showed that almost all amended and non-amended BSM were able to remove > 99% of influent metals over the 7-month experiment period (except Zn in WTCR media). Cu and Cr effluent concentrations in all media (except BFS media) increased to ~ 10% of influent concentrations during heavy rainfall which was probably due to decomposition of Cu/Cr-organic matter complexes. All bioretention columns removed > 99% of PHE and PYR (higher molecular weight PAHs) regardless of rain intensity and ADP, while the performance of different media for removing the lower molecular weight PAHs (NAP and ACY) varied with the rain intensity, and removal decreased when larger storms were experimentally simulated. For nutrients, among all media, BFS-amended media had high phosphate removal capacity (> 90%). Nitrate removal in all columns was notably affected by changes in stormwater intensity and ADP, likely due to difference in degree of saturation and the potential that anoxic conditions were created, which are favorable for denitrification. All media were ineffective in ammonium removal, and ammonium production occurred throughout experiment which might be due to the lack of nitrifiers in the media. Hydraulic properties of all media were appropriate over the entire experiment. BFS-amended media had the greatest negative effect on plant health, while CCF-amended media was supportive for plants. The transport model results showed that the predicted metal breakthrough times (according to EPA criteria) for different media were 6 years for non-amended media, 7 years for WTCR media, 25 years for CCF media, and 70 years for BFS media. Modeling PAHs, nutrients and some metals (Cr and Cu) under intermittent flow conditions are complicated and other processes and models need to be investigated as future study. Finally, cost analysis results showed that among all bioretention media, CCF- and BFS-amended media with the lowest capital and maintenance costs were the most cost-effective BSM. This research will improve our understanding of BSM amendments that will improve water quality while simultaneously support bioretention system hydrologic function as well as estimating costs of bioretention systems for a long-term application. / Civil Engineering
32

Val av ventilationssystem för kontorsverksamhet : En kostnadsjämförelse / Choice of ventilation system for office operations : A cost comparison

Johansson, Tom, Ryberg, Viktor January 2014 (has links)
Enligt Folkhälsomyndighetens uppgifter påstår 18 procent av den vuxna populationen att de lider av symtom relaterat till inomhusmiljön. Symtomen kan beröra alldagliga ohälsor däribland trötthet och huvudvärk till allvarliga åkommor såsom cancer (Folkhälsomyndigheten, 2013). Då ventilationens huvuduppgift är att tillgodose kraven på inomhusklimatet och därmed förebygga ohälsa, berör detta examensarbete problematiken kring ventilationssystemets utformning och dess ekonomiska konsekvenser. Syftet med arbetet var att identifiera vilken luftflödesprincip som är kostnadseffektivast för kontorsverksamhet utifrån två skilda typplanlösningar. Tre luftflödesprinciper har studerats, där slutligen ett CAV-, VAV- och DCV- system har utformats och dimensionerats utifrån realistiska förutsättningar och krav berörande inomhusklimatet. Ventilationssystemen utformas på skilda sätt med avseende på vilken luftflödesprincip som används, vilket bidrar till ekonomiska för- och nackdelar. Den ekonomiska undersökningen utförs genom jämförelser utifrån respektive ventilationssystems livscykelanalys, där luftflödesprinciper med likartade förutsättningar studeras i förhållande till varandra. Rapporten hanterar generella problem och tillvägagångssätt gällande problematiken kring dimensionering och utformning av ventilationssystem. De ekonomiska analyserna har resulterat i tydliga skillnader gällande investering-, drift- och underhållskostnader för respektive system. Resultatet påvisar att investeringskostnaden är den viktigaste faktorn vid val av ventilationssystem. / According to Folkhälsomyndigheten, 18 precent of the adult population claims they experience symptoms related to the indoor environment. These symptoms can consist of both common illnesses, such as fatigue and headache, to more serious diseases such as cancer (Folkhälsomyndigheten, 2013). The main task of a ventilation system is to satisfy the requirements regarding the indoor climate and thereby consequently prevent poor health. This report focuses on the complex problems regarding ventilation systems design and it´s economic consquences. The purpose with this report is to identify which airflow principle is the most cost effective for office operations basad on two distinct floor plans. Three airflow principles have been studied; consist of the CAV-, VAV- and DCV-principle. All principles were designed and dimensioned based on realistic conditions and the specific requirement regarding the indoor environment. Each ventilation system was designed differently depending on the applied airflow principle, which led to different economic pros and cons for each ventilation system. The airflow principle´s life cycle cost has been compared in an economic analysis. The economic analysises were based on comparisons between each ventilation system’s life cycle cost and it´s reigning conditions. The report deals with general problems and processes regarding the dimensioning and designing of the ventilation systems. The economic comparisons resulted in a substantial difference in investment- , operation- and the maintenance cost for each system. The results proved that the investment cost is the key factor when comparing the airflow principle´s life cycle cost.
33

Sustainable Material Solution for Flexible Pavements; Performance Evaluation and Impact Assessment of Utilizing Multiple Recycled Materials in HMA

Golestani, Behnam 01 January 2015 (has links)
The demand for pollution-free and recyclable engineering materials has been increased as the cost of energy and environmental concerns have risen. Green material design can lead to better environmental quality and sustainability of civil infrastructure. Road construction is one of the largest consumers of natural resources. Beneficial utilization of recycled materials can result in an important opportunity to save the mining and use of virgin materials, to preserve energy, and to save landfill space. Two main research questions addressed in this study are: (1) How much pollution, energy, natural resources, time and money can be salvaged by applying recycling materials to Hot-Mix Asphalt (HMA)?, (2) What are the optimum mix designs for those recycled materials in HMA?, and (3) Can multiple recycled materials be used at the same time to compensate each other*s drawbacks? This study evaluates the structural performance and environmental-economical cost and benefit by substituting one or a combination of three recycled materials in HMA. The three recycled materials are Recycled Asphalt Shingle (RAS), Municipal Solid Waste Incineration (MSWI) Bottom Ash, and Recycled Concrete Aggregate (RCA). Performance evaluation of the HMA including those recycled materials has been performed by a series of laboratory experimental tests while the environmental impact was investigated by the Life Cycle Assessment (LCA). In addition, Life Cycle Cost Analysis (LCCA) method has been employed to evaluate the benefit of the aforementioned recycled materials. In 2008, the Florida Legislature established a new statewide recycling goal of 75% to be achieved by the year 2020. The impact of this research aligns with this policy as it introduces a sustainable HMA that reduces the necessity of virgin aggregate and asphalt binder to 50% and 20%, respectively. In terms of environmental and economic impacts, in comparison with the regular HMA, it generates 25% less greenhouse gas emission, and for a period of 20 years, the cost of construction and maintenance would be 65% less.
34

LCA and LCCA in the design of geotechnical engineering works

Samuelsson, Ida January 2023 (has links)
Geotechnical engineering works are part of almost all construction and infrastructure projects. The geotechnical engineering work contributes to the impact on the environment and gives rise to costs throughout its life cycle. Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA) are established methods for evaluating a product's environmental impact and costs. However, the use of these methods is not extensive for geotechnical engineering works. A literature review showed that there is published research, but as the research topic is relatively new, there are many research gaps. A few topics in geotechnical engineering are better investigated than others and the entire life cycle is often not evaluated, usually only the production and construction stages. Although LCA and LCCA are established methods, the methodology for evaluating geotechnical engineering works needs further development to increase the evaluation work of sustainability aspects. In this licentiate thesis, a methodology is presented of how LCA and LCCA can be integrated into the geotechnical design process. The integration enables changes to the geotechnical design to further reduce the LCA and LCCA result, which is presented in the methodology. The methodology also presents a way to evaluate the possible geotechnical designs to select the most sustainable design based on the LCA and LCCA results. The thesis also presents the performance of LCA and LCCA for geotechnical engineering works and solutions to several difficulties that the geotechnical engineer may encounter during the evaluation of environmental impact and costs. / Geotekniska konstruktioner är en del av i stort sett alla konstruktions- och infrastrukturprojekt. Den geotekniska konstruktionen bidrar till påverkan på miljön samt ger upphov till kostnader under hela sin livscykel. Livscykelanalys (LCA) och livscykelkostnadsanalys (LCCA) är etablerade metoder för att utvärdera en produkts miljöpåverkan respektive kostnader. Användningen av dessa metoder är dock inte stor för geotekniska konstruktioner. En litteraturgenomgång visade att det finns publicerad forskning men då forskningsämnet är relativt nytt finns det många forskningsluckor. Ett fåtal ämnen inom geoteknik är bättre utredda än andra och hela livscykeln är oftast inte utvärderad utan vanligtvis endast produktions- och konstruktionssteget. Trots att LCA och LCCA är etablerade metoder behöver metodiken för utvärdering av geotekniska konstruktioner utvecklas för att öka utvärderingsarbetet av hållbarhetsaspekter. I denna licentiatuppsats presenteras en metodik för hur LCA och LCCA kan integreras i den geotekniska designprocessen. Integreringen möjliggör ändringar av den geotekniska designen för att ytterligare reducera LCA- och LCCA-resultatet vilket presenteras i metodiken. Metodiken redovisar även ett sätt för att utvärdera de möjliga geotekniska designerna för att utifrån LCA- och LCCA-resultaten välja den mest hållbara designen.  Uppsatsen redovisar även utförandet av LCA och LCCA för geotekniska konstruktioner och lösningar på ett flertal svårigheter som geoteknikern kan påträffa under utvärderingen av miljöpåverkan och kostnader. / <p>QC 230313</p>
35

Energy performance evaluation and economic analysis of variable refrigerant flow systems

Kim, Dongsu 09 August 2019 (has links)
This study evaluates energy performance and economic analysis of variable refrigerant flow (VRF) systems in U.S. climate locations using widelyepted whole building energy modeling software, EnergyPlus. VRF systems are known for their high energy performance and thus can improve energy efficiency in buildings. To evaluate the energy performance of a VRF system, energy simulation modeling and calibration of a VRF heat pump (HP) type system is performed using the EnergyPlus program based on measured data collected from an experimental facility at Oak Ridge National Laboratory (ORNL). In the calibration procedures, the energy simulation model is calibrated, according to the ASHRAE Guideline 14-2014, under cooling and heating seasons. After a proper calibration of the simulation model, the VRF HP system is placed in U.S. climate locations to evaluate the performance variations in different weather conditions. An office prototype building model, developed by the U.S. Department of Energy (DOE), is used with the VRF HP system in this study. This study also considers net-zero energy building (NZEB) design of VRF systems with a distributed photovoltaic (PV) system. The NZEB concept has been considered as one of the remedies to reduce electric energy usages and achieve high energy efficiency in buildings. Both the VRF HP and VRF heat recovery (HR) system types are considered in the NZEB design, and a solar PV system is utilized to enable NZEB balances in U.S. climate locations by assuming that net-metering available within the electrical grid-level. In addition, this study conducts life cycle cost analysis (LCCA) of NZEBs with VRF HP and HR systems. LCCA provides present values at a given study period, discounted payback period, and net-savings between VRF HP and HR systems in U.S. climate locations. Preliminary results indicate that the simulated VRF HP system can reasonably predict the energy performance of the actual VRF HP system and reduce between 15-45% for HVAC site energy uses when compared to a VAV system in U.S. climate locations. The VRF HR system can be used to lower building energy demand and thus achieve NZEB performance effectively in some hot and mild U.S. climate locations.
36

MECHANISTIC-BASED PERFORMANCE PREDICTION AND LIFE CYCLE COST ANALYSIS TOOLS: AN APPLICATION TO THE OHIO ROUTE 50 TEST PAVEMENT

TALLAPRAGADA, PAVAN KUMAR 13 July 2005 (has links)
No description available.
37

Avaliação do ciclo de vida ambiental e econômica de sistemas descentralizados de tratamento de esgoto envolvendo wetlands construídos / Environmental and economic life cycle assessment of wastewater treatment systems involving constructed wetlands

Resende, Juliana Dalia 01 November 2018 (has links)
Os sistemas de tratamento de esgotos, apesar de possibilitarem a eliminação ou redução de poluentes e substâncias indesejados presentes nas águas residuárias, também ocasionam impactos ambientais. Essa característica deve ser levada em consideração no momento da instalação de uma alternativa tecnológica para o tratamento de esgoto e na proposição de melhorias aos sistemas selecionados. Uma das ferramentas que pode ser utilizada para avaliar o desempenho ambiental de sistemas de tratamento de esgoto é a Avaliação do Ciclo de Vida (ACV), a qual pode ser complementada pela metodologia de Avaliação do Custo do Ciclo de Vida (ACCV), que permite calcular o custo total de um projeto ao longo de seu ciclo de vida. No presente estudo, a ACV e a ACCV foram utilizadas com o objetivo de analisar os potenciais impactos ambientais e custos de diferentes configurações de sistemas pilotos de tratamento de esgoto envolvendo wetlands construídos (WC) com e sem aeração. Foram obtidos também fatores de alocação para as potenciais cargas ambientais do lodo e do efluente do tanque séptico, que possibilitarão a realização de estudos futuros de ACV para alternativas de destinação do lodo de tanques sépticos. A modelagem dos sistemas e os cálculos envolvidos na avaliação dos impactos do ciclo de vida foram realizados mediante o uso do software openLCA v. 1.6.3. Para a avaliação das categorias de impacto de acidificação terrestre, mudança climática, eutrofização aquática de água doce, formação de oxidantes fotoquímicos, ecotoxicidade de água doce e toxicidade humana foi utilizado o método de avaliação de impacto ReCiPe. Foram avaliadas também as categorias de ecotoxicidade e toxicidade humana, utilizando o método USEtox. Nas análises envolvendo um WC aerado a etapa de operação se mostrou com um maior potencial de causar impactos ambientais para todas as categorias de impacto analisadas, com resultados variando entre 63,9% para a categoria de toxicidade humana e 99,8% para a categoria de eutrofização de água doce. Na comparação de materiais utilizados na construção dos sistemas, o potencial de causar impactos ambientais da fibra de vidro foi até 4,7 vezes menor que o potencial de causar impactos ambientais da alvenaria em tijolos para todas as categorias de impacto analisadas. Contudo, a utilização de fibra de vidro ao invés de alvenaria em tijolos apresentou custos mais elevados. O custo do ciclo de vida por m3 de esgoto tratado do sistema envolvendo um WC com aeração mostrou-se cerca de 1,8 vezes menor do que o do sistema sem aeração. Os resultados encontrados trazem contribuições que podem auxiliar na tomada de decisão no que diz respeito à implantação e operação de sistemas de tratamento de esgoto, visando tornar estes mais sustentáveis do ponto de vista econômico e ambiental / Although wastewater treatment systems, allow for the elimination or reduction of pollutants and unwanted substances in wastewater, they also cause environmental impacts. One tool that can evaluate the environmental performance of wastewater treatment systems is Life Cycle Assessment (LCA), which can be complemented by Life Cycle Cost Analysis (LCCA), which calculates the total cost of a project over its entire life cycle. In the present study, the LCA and LCCA were used to analyze the potential environmental impacts and costs of different wastewater treatment pilot plant configurations involving constructed wetlands (CW) with and without aeration. The modeling of the systems and the calculations involved in the assessment of the life cycle impacts were performed using the openLCA v. 1.6.3 software. The impact assessment method used for the impact categories of terrestrial acidification, climate change, freshwater aquatic eutrophication, formation of photochemical oxidants, ecotoxicity and human toxicity was ReCiPe. The categories of ecotoxicity and human toxicity were also evaluated using the USEtox method. In the analyzes involving an aerated CW, the operation stage showed the greatest potential to cause environmental impacts for all impact categories analyzed, with results varying between 63.9% for the category of human toxicity and 99.8% for the category of freshwater eutrophication. The comparison of materials used in the construction of systems has demonstrated that the potential to cause environmental impacts of fiberglass was up to 4.7 times less than the potential to cause environmental impacts of brick masonry for all impact categories analyzed. However, the use of fiberglass instead of masonry in bricks has presented higher costs. The life cycle cost per cubic meter of treated sewage of the system involving a CW with aeration was about 1.8 times smaller than that of the system without aeration. Results can aid in decision making regarding the implementation and operation of wastewater treatment plants, in order to make these systems more sustainable from an economic and environmental point of views
38

Avaliação do ciclo de vida ambiental e econômica de sistemas descentralizados de tratamento de esgoto envolvendo wetlands construídos / Environmental and economic life cycle assessment of wastewater treatment systems involving constructed wetlands

Juliana Dalia Resende 01 November 2018 (has links)
Os sistemas de tratamento de esgotos, apesar de possibilitarem a eliminação ou redução de poluentes e substâncias indesejados presentes nas águas residuárias, também ocasionam impactos ambientais. Essa característica deve ser levada em consideração no momento da instalação de uma alternativa tecnológica para o tratamento de esgoto e na proposição de melhorias aos sistemas selecionados. Uma das ferramentas que pode ser utilizada para avaliar o desempenho ambiental de sistemas de tratamento de esgoto é a Avaliação do Ciclo de Vida (ACV), a qual pode ser complementada pela metodologia de Avaliação do Custo do Ciclo de Vida (ACCV), que permite calcular o custo total de um projeto ao longo de seu ciclo de vida. No presente estudo, a ACV e a ACCV foram utilizadas com o objetivo de analisar os potenciais impactos ambientais e custos de diferentes configurações de sistemas pilotos de tratamento de esgoto envolvendo wetlands construídos (WC) com e sem aeração. Foram obtidos também fatores de alocação para as potenciais cargas ambientais do lodo e do efluente do tanque séptico, que possibilitarão a realização de estudos futuros de ACV para alternativas de destinação do lodo de tanques sépticos. A modelagem dos sistemas e os cálculos envolvidos na avaliação dos impactos do ciclo de vida foram realizados mediante o uso do software openLCA v. 1.6.3. Para a avaliação das categorias de impacto de acidificação terrestre, mudança climática, eutrofização aquática de água doce, formação de oxidantes fotoquímicos, ecotoxicidade de água doce e toxicidade humana foi utilizado o método de avaliação de impacto ReCiPe. Foram avaliadas também as categorias de ecotoxicidade e toxicidade humana, utilizando o método USEtox. Nas análises envolvendo um WC aerado a etapa de operação se mostrou com um maior potencial de causar impactos ambientais para todas as categorias de impacto analisadas, com resultados variando entre 63,9% para a categoria de toxicidade humana e 99,8% para a categoria de eutrofização de água doce. Na comparação de materiais utilizados na construção dos sistemas, o potencial de causar impactos ambientais da fibra de vidro foi até 4,7 vezes menor que o potencial de causar impactos ambientais da alvenaria em tijolos para todas as categorias de impacto analisadas. Contudo, a utilização de fibra de vidro ao invés de alvenaria em tijolos apresentou custos mais elevados. O custo do ciclo de vida por m3 de esgoto tratado do sistema envolvendo um WC com aeração mostrou-se cerca de 1,8 vezes menor do que o do sistema sem aeração. Os resultados encontrados trazem contribuições que podem auxiliar na tomada de decisão no que diz respeito à implantação e operação de sistemas de tratamento de esgoto, visando tornar estes mais sustentáveis do ponto de vista econômico e ambiental / Although wastewater treatment systems, allow for the elimination or reduction of pollutants and unwanted substances in wastewater, they also cause environmental impacts. One tool that can evaluate the environmental performance of wastewater treatment systems is Life Cycle Assessment (LCA), which can be complemented by Life Cycle Cost Analysis (LCCA), which calculates the total cost of a project over its entire life cycle. In the present study, the LCA and LCCA were used to analyze the potential environmental impacts and costs of different wastewater treatment pilot plant configurations involving constructed wetlands (CW) with and without aeration. The modeling of the systems and the calculations involved in the assessment of the life cycle impacts were performed using the openLCA v. 1.6.3 software. The impact assessment method used for the impact categories of terrestrial acidification, climate change, freshwater aquatic eutrophication, formation of photochemical oxidants, ecotoxicity and human toxicity was ReCiPe. The categories of ecotoxicity and human toxicity were also evaluated using the USEtox method. In the analyzes involving an aerated CW, the operation stage showed the greatest potential to cause environmental impacts for all impact categories analyzed, with results varying between 63.9% for the category of human toxicity and 99.8% for the category of freshwater eutrophication. The comparison of materials used in the construction of systems has demonstrated that the potential to cause environmental impacts of fiberglass was up to 4.7 times less than the potential to cause environmental impacts of brick masonry for all impact categories analyzed. However, the use of fiberglass instead of masonry in bricks has presented higher costs. The life cycle cost per cubic meter of treated sewage of the system involving a CW with aeration was about 1.8 times smaller than that of the system without aeration. Results can aid in decision making regarding the implementation and operation of wastewater treatment plants, in order to make these systems more sustainable from an economic and environmental point of views
39

Recycled Concrete Aggregate – A Viable Aggregate Source For Concrete Pavements

Smith, James Trevor 27 November 2009 (has links)
Virgin aggregate is being used faster than it is being made available creating a foreseeable shortage in the future. Despite this trend, the availability of demolished concrete for use as recycled concrete aggregate (RCA) is increasing. Using this waste concrete as RCA conserves virgin aggregate, reduces the impact on landfills, decreases energy consumption and can provide cost savings. However, there are still many unanswered questions on the beneficial use of RCA in concrete pavements. This research addresses the many technical and cost-effective concerns regarding the use of RCA in concrete pavements by identifying concrete mixture and proportioning designs suitable for jointed plain concrete pavements; constructing test sections using varying amounts of RCA; monitoring performance through testing, condition surveys and sensor data; modeling RCA pavement performance; and predicting life cycle costs. The research was carried out as a partnership between the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo, the Cement Association of Canada, Dufferin Construction, and the Natural Sciences and Engineering Research Council of Canada. The literature review provides an overview of sustainability and key performance indicators, the material properties of RCA both as an aggregate and in concrete, concrete mixture and proportioning designs with RCA, performance of existing RCA pavements, and the implementation of RCA highlighting some examples where RCA has been used successfully. Twelve preliminary mixes were developed using three total cementitious contents amounts of 315 kg/m3, 330 kg/m3, and 345 kg/m3 to determine four suitable mixes with varying coarse RCA contents (0%, 15%, 30% and 50%) to place at the CPATT test track. At 28-days, all of the twelve mixes exceed the 30 MPa design strength. Four test sections containing 0%, 15%, 30% and 50% coarse RCA were constructed in June 2007. The test sections had identical cross sections consisting of 250 mm portland cement concrete (PCC), 100 mm asphalt-stabilized OGDL and a 450 mm granular base. For each coarse RCA content, one slab was instrumented with six vibrating wire concrete embedment strain gages to measure long-term longitudinal and transverse strain due to environmental changes, two vibrating wire vertical extensometers to monitor slab curling and warping, two vibrating wire inter-panel extensometers to monitor joint movement, and two maturity meters to measure maturity and temperature. Quality assurance and quality control (QA/QC) testing showed that the mixes containing RCA exhibited similar or improved performance when compared to the conventional concrete for compressive and flexural strength, freeze-thaw durability and coefficient of thermal expansion. Pavement performance of the four test sections was evaluated using visual surveys following the Ontario Ministry of Transportation’s Manual for Condition rating of Rigid Pavements. Nine pavement evaluations have been performed every two to four months since construction. All test sections are in excellent condition with pavement condition index (PCI) values greater than 85 after two years in-service and approximately three hundred thousand Equivalent Single Axle Loads. Sensor data from the strain gauges, and vertical and inter-panel extensometers are providing consistent results between the test sections. Long-term performance modeling using the Mechanistic-Empirical Pavement Design Guide (ME-PDG) showed improved performance with respect to cracked slabs, joint faulting, and pavement roughness as the RCA content increased. Multivariable sensitivity analysis showed that the performance results were sensitive to CTE, unit weight, joint spacing, edge support, surface absorption, and dowel bar diameter. Life cycle cost analysis (LCCA) illustrated the savings that can be expected using RCA as a replacement aggregate source as the cost of virgin aggregate increase as the sources becomes depleted. Multivariable sensitivity analysis showed that the LCCA results were sensitive to construction costs, discount rate, and maintenance and rehabilitation quantities.
40

Recycled Concrete Aggregate – A Viable Aggregate Source For Concrete Pavements

Smith, James Trevor 27 November 2009 (has links)
Virgin aggregate is being used faster than it is being made available creating a foreseeable shortage in the future. Despite this trend, the availability of demolished concrete for use as recycled concrete aggregate (RCA) is increasing. Using this waste concrete as RCA conserves virgin aggregate, reduces the impact on landfills, decreases energy consumption and can provide cost savings. However, there are still many unanswered questions on the beneficial use of RCA in concrete pavements. This research addresses the many technical and cost-effective concerns regarding the use of RCA in concrete pavements by identifying concrete mixture and proportioning designs suitable for jointed plain concrete pavements; constructing test sections using varying amounts of RCA; monitoring performance through testing, condition surveys and sensor data; modeling RCA pavement performance; and predicting life cycle costs. The research was carried out as a partnership between the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo, the Cement Association of Canada, Dufferin Construction, and the Natural Sciences and Engineering Research Council of Canada. The literature review provides an overview of sustainability and key performance indicators, the material properties of RCA both as an aggregate and in concrete, concrete mixture and proportioning designs with RCA, performance of existing RCA pavements, and the implementation of RCA highlighting some examples where RCA has been used successfully. Twelve preliminary mixes were developed using three total cementitious contents amounts of 315 kg/m3, 330 kg/m3, and 345 kg/m3 to determine four suitable mixes with varying coarse RCA contents (0%, 15%, 30% and 50%) to place at the CPATT test track. At 28-days, all of the twelve mixes exceed the 30 MPa design strength. Four test sections containing 0%, 15%, 30% and 50% coarse RCA were constructed in June 2007. The test sections had identical cross sections consisting of 250 mm portland cement concrete (PCC), 100 mm asphalt-stabilized OGDL and a 450 mm granular base. For each coarse RCA content, one slab was instrumented with six vibrating wire concrete embedment strain gages to measure long-term longitudinal and transverse strain due to environmental changes, two vibrating wire vertical extensometers to monitor slab curling and warping, two vibrating wire inter-panel extensometers to monitor joint movement, and two maturity meters to measure maturity and temperature. Quality assurance and quality control (QA/QC) testing showed that the mixes containing RCA exhibited similar or improved performance when compared to the conventional concrete for compressive and flexural strength, freeze-thaw durability and coefficient of thermal expansion. Pavement performance of the four test sections was evaluated using visual surveys following the Ontario Ministry of Transportation’s Manual for Condition rating of Rigid Pavements. Nine pavement evaluations have been performed every two to four months since construction. All test sections are in excellent condition with pavement condition index (PCI) values greater than 85 after two years in-service and approximately three hundred thousand Equivalent Single Axle Loads. Sensor data from the strain gauges, and vertical and inter-panel extensometers are providing consistent results between the test sections. Long-term performance modeling using the Mechanistic-Empirical Pavement Design Guide (ME-PDG) showed improved performance with respect to cracked slabs, joint faulting, and pavement roughness as the RCA content increased. Multivariable sensitivity analysis showed that the performance results were sensitive to CTE, unit weight, joint spacing, edge support, surface absorption, and dowel bar diameter. Life cycle cost analysis (LCCA) illustrated the savings that can be expected using RCA as a replacement aggregate source as the cost of virgin aggregate increase as the sources becomes depleted. Multivariable sensitivity analysis showed that the LCCA results were sensitive to construction costs, discount rate, and maintenance and rehabilitation quantities.

Page generated in 0.1088 seconds