• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 3
  • Tagged with
  • 46
  • 19
  • 15
  • 15
  • 13
  • 13
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence du profil lipidique maternel sur l'expression de récepteurs à lipoprotéine de faible densité

Éthier Chiasson, Maude 03 1900 (has links) (PDF)
L'obésité, avec les conséquences physiologiques qu'elle engendre, est sans doute une des pathologies entraînant le plus grand nombre de décès en Amérique du Nord. On note un accroissement de l'obésité chez les enfants qui semble pouvoir être corrélée au profil lipidique de la mère durant la grossesse. Cependant, les échanges lipidiques placentaires demeurent un volet de la science encore peu étudié. Dans le plasma, le cholestérol est véhiculé via les lipoprotéines, principalement par un certain type, soit les lipoprotéines à faible densité (LDL). Ces LDL natives sont reconnues par le récepteur aux LDL (LDLr) présent à la surface des syncytiotrophoblastes. Chez l'humain, le troisième trimestre de la grossesse associé à une hypercholestérolémie prononcée pouvant avoir comme conséquence d'engendrer des LDL oxydées. Ces particules sont considérées comme étant plus arthérogéniques, puisque leur affinité avec le LDLr est réduite. Ces LDL oxydées sont les ligands d'autres récepteurs soit le « lectinlike oxidized low density lipoprotein receptor-1 » (LOX-1) et le « scavenger receptor type BI» (SR-BI). Par contre, la régulation de l'expression de ces différents récepteurs au niveau du placenta, en cas d'hypercholestérolémie, reste en grande partie inexplorée. Le but de cette étude est de caractériser la régulation de l'expression des différents récepteurs de LDL dans le placenta en fonction du profil lipidique maternel, soit de la concentration de cholestérol plasmatique, de l'indice de masse corporel pré-grossesse (IMC) et du gain de poids (GDP) en cours de grossesse. Les femmes sélectionnées sont dans un premier temps classées selon leur concentration plasmatique (inférieur à 7mM ou supérieur à 8mM), puis rétrospectivement classées selon leur IMC (normal, inférieur ou supérieur à la normale établie), ainsi qu'en fonction de leur GDP durant la grossesse (normal, inférieur ou supérieur à la normale). De plus, l'expression de ces différents récepteurs sera aussi quantifiée chez un groupe de femmes présentant un diabète gestationnel. Enfin, la localisation de ces récepteurs au niveau du syncytiotrophoblaste, soit au niveau de la membrane à bordure en brosse (BBM) ou de la membrane basale plasmique (BPM), sera déterminée. L'expression protéique des différents récepteurs dans le placenta est quantifiée par immunobuvardage de type Western et par immunohistochimie. Les résultats démontrent une diminution de l'expression du LDLr, chez les femmes ayant une concentration de cholestérol >8mM, qui semble être corrélée négativement à l'IMC et au GDP. Inversement, une augmentation de l'expression de LOX-1 est observée chez les femmes ayant une concentration de cholestérol <7mM et semble être corrélée positivement avec l'IMC, mais négativement avec le GDP. L'expression de SR-BI ne semble pas être modifiée. Ainsi, l'environnement placentaire est influencé par les IMC et GDP hors norme, ce qui, à long terme, pourrait être associé à une augmentation des problèmes cardiovasculaires. (Subventionné par IRSC) ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Placenta, LDL, LDL oxydées, LDLr, LOX-1, SR-BI, diabète gestationnel
12

Détermination des effets biochimiques et physiologiques de la captation sélective des esters de cholestérol des lipoprotéines de faible densité par le récepteur "scavenger" de classe B, type I

Alem, Sonia 04 1900 (has links) (PDF)
Le cholestérol est véhiculé dans le sang par les lipoprotéines de faible densité (LDL), du foie vers les cellules. Ces LDL se divisent en 3 sous-classes (LDL1, LDL2 et LDL3). Elles sont métabolisées soit par captation sélective par le récepteur « scavenger » de classe B, type I (SR-BI) qui permet de capter uniquement leurs esters de cholestérol (EC) ou par captation globale par le récepteur de LDL (rLDL). Des études réalisées par le groupe de Madame Brissette ont démontré que des LDL injectées à des souris et ré-isolées quelques heures plus tard se retrouvent appauvries en EC et sont de plus petites tailles. Ces études ont donc établi le phénomène de la captation sélective des EC des LDL in vivo. Le sujet de ce mémoire est l'étude de l'effet de la captation sélective sur les LDL1, LDL2 et LDL3. Pour cela, des souris CD1 ont été injectées avec 3 mg de LDL1, LDL2 et LDL3 natives et 5 heures plus tard, les LDL modifiées ont été isolées par ultracentrifugation. Le travail expérimental subséquent a permis de déterminer les caractéristiques de chacun des types de LDL à savoir leur composition chimique par dosage enzymatique; taille par électrophorèse sur gradient de gel de polyacrylamide; densité par la procédure de Terpstra; charge selon leurs migrations sur gel d'agarose-barbital; niveau d'oxydation des LDL après une incubation avec du CuSO4; capacité à accepter les EC des HDL3 par la protéine de transfert des esters de cholestérol (CETP); activité de captation sélective des EC de SR-BI des cellules HepG2 envers les différents types de LDL et leurs affinités de liaison pour le rLDL. Les résultats ont démontré qu'il y a une diminution de 15% en EC pour les LDLt modifiées et de 58% et 41% en triglycérides (TG) pour les LDL1 et LDL2 modifiées. Il y a eu également un enrichissement en cholestérol total (CT) et cholestérol libre (CL) pour chacune des 3 sous-classes de LDL modifiées. Les résultats ont également démontré que, par rapport à leurs formes natives respectives, les LDL1 modifiées sont plus denses, plus petites et sont chargées plus négativement, les LDL3 modifiées sont moins denses, plus grosses et plus chargées négativement, alors que les LDL2 modifiées sont moins chargées négativement et ne démontrent pas de différence de taille et de densité. Toutes les sous-classes de LDL modifiées semblent être plus sensibles à l'oxydation, ce qui à première vue semble néfaste. Les résultats de transfert des EC des HDL3 vers les sous-classes de LDL ne démontrent aucune différence significative entre les différentes sous-classes natives et modifiées mais il y a 11% moins de transfert des EC aux LDL3 natives qu'aux LDL1 natives et une tendance à la diminution pour les LDL3 natives par rapport aux LDL2 natives. L'étude in vitro avec des cellules HepG2 a démontré qu'il y a une augmentation de 90% de la captation sélective pour les LDL1 modifiées alors qu'il y a une diminution de 46% pour les LDL2 modifiées, par rapport à leurs formes natives. Aussi, une augmentation de 56% d'affinité de liaison envers le rLDL est observée pour les LDL1 et LDL2 modifiées, par rapport à leurs formes natives. Ainsi, la captation sélective des EC dans la circulation sanguine par le SR-BI favoriserait la dégradation des LDL1 et LDL2, in vivo, ce qui est bénéfique pour l'organisme et permettrait donc la réduction des risques cardiovasculaires. D'autres études sont nécessaires afin de tester les LDL3 sur les cellules HepG2. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : captation sélective, SR-BI, rLDL, sous-classes de LDL.
13

Importance de la cavéoline-1, du récepteur "scavenger" de classe B, type I et du "Cluster" de différenciation-36 dans le métabolisme des lipoprotéines natives et oxydées au niveau des cellules hépatiques

Truong, To-Quyen January 2008 (has links) (PDF)
Le cholestérol est souvent perçu comme néfaste à la santé mais c'est un constituant essentiel pour l'élaboration de la membrane cellulaire, la synthèse de certaines hormones stéroïdiennes et des acides biliaires. Vu l'augmentation fulminante de maladies cardiovasculaires reliées à un excès de cholestérol dans la circulation sanguine qui se traduit par un dépôt au niveau de la paroi de l'artère, il est nécessaire de pousser les connaissances sur le métabolisme du cholestérol. Sachant que le cholestérol est transporté dans le système circulatoire par le biais de lipoprotéines et que les apolipoprotéines de ces dernières interagissent avec les récepteurs cellulaires, il est primordial de mettre en évidence ces voies impliquées dans la captation des lipoprotéines. Il existe plusieurs classes de récepteurs de lipoprotéines à la surface cellulaire dont l'une mène à l'internalisation et une dégradation complète de la particule. L'exemple le plus connu de cette classe est le récepteur de LDL (rLDL). L'autre classe peut capter sélectivement les esters de cholestérol (EC) des lipoprotéines de faible densité (LDL) ou lipoprotéines de haute densité (HDL), sans toutefois entraîner une captation et dégradation parallèle de leurs apolipoprotéines. Les deux récepteurs impliqués dans la captation sélective des EC sont le "cluster of differentiation" (CD36) et le récepteur "scavenger" de type B, classe l (SR-BI). Ces récepteurs se retrouvent dans le foie mais au moment où ces études doctorales ont été amorcées ils avaient été caractérisés surtout dans les cellules extrahépatiques et colocalisés dans les cavéoles, des invaginations membranaires absentes du foie. Notre première étude a permis de démontrer que, dans les cellules hépatiques de souris, la captation sélective des EC peut se faire autant par les cellules parenchymateuses que non parenchymateuses. Cependant, seulement les cellules parenchymateuses peuvent soutirer les EC à partir des trois classes, soient les HDL, LDL et LDL oxydées (LDLox) tandis que les cellules non parenchymateuses le font qu'à partir des LDL et LDLox. De plus, les cellules parenchymateuses expriment plus de rLDL, SR-BI et CD36 que les cellules non parenchymateuses. Cependant, la cavéoline-I est détectable seulement dans les cellules non parenchymateuses. En second lieu, nous avons voulu définir l'implication de la cavéoline-I exprimée dans la cellule HepG2 normale (un hépatome humain) au niveau du métabolisme des LDL et HDL. Pour ce faire, l'ADN complémentaire (ADNc) de la cavéoline a été inséré en orientation sens dans le vecteur d'expression eucaryote (pRc/CMV) puis transfecté dans des cellules HepG2. L'expression de la cavéoline-I génère une augmentation de la captation de l'albumine et de l'efflux de cholestérol suggérant la formation de cavéoles. Les cellules HepG2 exprimant la cavéoline-I révèlent une augmentation de 108% de la dégradation des LDL, une augmentation de 55% de la captation sélective des EC à partir des HDL mais une diminution de 66% pour celle des LDL. De plus, notre étude démontre qu'il y a une plus de colocalisation entre la cavéoline-l et le CD36 ou le rLDL qu'entre la cavéoline-l et le SR-BI. Par contre, la présence de la cavéoline-I augmente la forme dimérique du SR-BI. Ainsi, l'expression de la cavéoline-l dans les cellules HepG2 favorise la captation sélective des EC à partir des HDL ainsi que la dégradation des LDL tandis que dans les cellules normales HepG2, la voie de captation sélective des EC des LDL est favorisée. En troisième lieu, comme le foie génère une quantité substantielle de cholestérol, nous avons étudié l'efflux de cholestérol sur de multiples lignées de cellules HepG2 ainsi que les cellules hépatiques de foie de souris. Nos études démontrent que la surexpression de SR-BI, de CD36 et de la cavéoline-I dans les cellules HepG2 génère une augmentation de l'efflux de cholestérol de 106%, 92% et 48% respectivement. De plus, une double surexpression de SRBI et de la cavéoline-l ou de CD36 et de la cavéoline-l induit une hausse plus importante de l'efflux de cholestérol. Les expériences réalisées avec les cellules hépatiques de souris en culture primaire ont révélé une diminution de 41 % et 56% de l'efflux de cholestérol pour les cellules de souris déficientes en SR-Bl ou doublement déficientes en SR-BI et CD36 respectivement. Cependant, aucune différence significative n'a été observée pour les souris déficientes en CD36. Ainsi, les résultats suggèrent que le SR-BI est impliqué autant dans l'efflux de cholestérol chez les cellules hépatiques de souris que chez l'humain tandis que CD36 ne l'est que chez l'humain. Nos derniers travaux visaient à élucider l'importance de la cavéoline-L dans le métabolisme des LDLox. Nos résultats révèlent que la cavéoline-I a le potentiel d'augmenter autant la liaison que la dégradation des LDL légèrement (LDLlox) que fortement oxydées (LDLfox). Par contre, la présence de la cavéoline-I affecte seulement la captation sélective des EC en diminuant de 50% celle des LDLlox et pas celle des LDLfox. Cette étude démontre aussi une augmentation de 27% de l'efflux de cholestérol à partir de LDLlox mais une diminution de 22% à partir des LDLfox. Enfin, l'expression de la cavéoline-l stabilise les niveaux de SR-BI et de rLDL lorsque les cellules HepG2 sont traitées avec les LDLox (lox et fox) mais n'a pas d'impact sur le niveau de CD36. Ces résultats suggèrent que l'importance physiologique de l'expression de la cavéoline-l hépatique est dans le rôle de l'épuration (dégradation) de ces particules athérogènes. En conclusion, l'ensemble des travaux rapportés dans cette thèse supporte que l'expression de la cavéoline-I au niveau hépatique grâce à une modulation biotechnologique aurait un rôle clé dans l'homéostasie du cholestérol hépatique, puisqu'elle affecte à la hausse l'efflux de cholestérol et module la captation sélective à partir des LDL, HDL et LDL oxydées. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Foie, Lipoprotéines, Cavéoline, Récepteurs, Oxydation.
14

Influence des polymorphismes de l'apolipoprotéine E et de la lipoprotéine lipase sur le phénotype de l'hypertriglycéridémie / hyperapobêtalipoprotéinémie

Perron, Patrice 11 April 2018 (has links)
Le syndrome métabolique est un amalgame de facteurs de risque cardiovasculaire souvent associés à un déséquilibre du profil lipidique incluant une hypertriglycéridémie (hyperTG) et une hyperapobêtalipoprotéinémie (hyperapoB). Plusieurs données pointent les mutations indépendantes dans les gènes de la lipoprotéine lipase (LPL) et de l'apolipoprotéine E (apoE) pour expliquer les anomalies des concentrations plasmatiques des triglycérides ou de l'apolipoprotéine B (apoB). La contribution combinée de ces mutations a cependant été très peu explorée jusqu'à maintenant. Les hypothèses du présent projet partent de la prémisse que ces génotypes pourraient avoir un effet combiné athérogène sur le phénotype du syndrome métabolique et ainsi aggraver le risque cardiovasculaire. Le but du présent travail était donc de mieux comprendre l'influence des génotypes combinés de la LPL et de l'apoE sur l'expression de l'hyperTG et de l'hyperapoB puisque ces deux phénotypes sont intimement liés au syndrome métabolique et donc au risque de développer des maladies cardiovasculaires. Nos résultats ont permis de montrer que le génotype combiné LPL/apoE influence de façon significative le risque d'exprimer le phénotype hyperTG/hyperapoB et ce, plus particulièrement lorsque l'allèle e4 est présent. Par conséquent, en raison de l'implication du phenotype hyperTG/hyperapoB sur le risque cardiovasculaire et des complications associées à l'expression du syndrome métabolique, l'identification de mutations fréquentes comme celles-ci peut être utile et pourrait se traduire en avenues prometteuses pour le développement de nouveaux outils thérapeutiques ou de stratégies préventives.
15

Impact des niveaux de protéine C-réactive sur le risque d'incidence et de progression de sténose aortique médié par la lipoprotéine(a)

Girard, Arnaud 04 April 2024 (has links)
Thèse ou mémoire avec insertion d'articles. / La sténose aortique (SA) est la maladie valvulaire cardiaque la plus répandue au monde. La lipoprotéine(a) (Lp[a]) est un transporteur lipidique dérivée des lipoprotéines de faible densité (*Low density* lipoprotein, LDL) dont les niveaux sanguins sont fortement liés à un risque accru de SA. Des récentes études ont suggéré que la Lp(a) n'influencerait le risque de sténose qu'en présence de hauts niveaux d'inflammation basal. Nous avons donc émis l'hypothèse que la Lp(a) aurait un effet sur le risque d'incidence et la progression de la SA indépendamment des niveaux d'inflammation. Nous avons testé cette hypothèse en utilisant les données de l'étude EPIC-Norfolk et de la UK Biobank pour étudier le lien entre les niveaux de Lp(a), de CRP, un marqueur d'inflammation systémique, et d'incidence de SA et de l'étude ASTRONOMER pour investiguer la relation entre la Lp(a), la CRP et la progression de la SA. Les résultats obtenus dans EPIC-Norfolk et la UK Biobank étaient très similaires. Ces résultats ont révélé que le fait d'avoir un haut niveau de Lp(a) menait à un plus grand risque d'incidence de SA indépendamment des niveaux d'inflammation. Les résultats de progression dans l'étude ASTRONOMER ont démontré que la Lp(a) était associé à une progression plus rapide de la SA en présence ou en absence d'inflammation mais que l'inflammation pourrait aussi jouer un rôle dans la progression de la maladie. Ceci signifie que la Lp(a) est associée à l'incidence et à la progression de la SA et que l'utilisation de marqueurs d'inflammation comme la protéine C-réactive pourrait aider à identifier les patients atteints de SA à risque d'avoir une progression rapide de la maladie. / Calcific aortic valve stenosis (CAVS) is the most common heart valve disease worldwide. Lipoprotein(a) (Lp[a]) is a lipid transporter derived from Low density lipoprotein (LDL) whose blood levels are strongly linked to an increased risk of CAVS. Recent studies have suggested that Lp(a) may only influence the risk of stenosis in the presence of high levels of basal inflammation. We therefore hypothesized that Lp(a) would influence the risk of incidence and progression of CAVS independent of inflammation levels. We tested this hypothesis using data from the EPIC-Norfolk study and the UK Biobank to investigate the link between levels of Lp(a), CRP, a marker of systemic inflammation, and CAVS incidence, and the ASTRONOMER study to investigate the relationship between Lp(a), CRP, and CAVS progression. The results obtained in EPIC-Norfolk and the UK Biobank were very similar. These results revealed that having a high Lp(a) level led to a greater risk of CAVS incidence independent of inflammation levels. The progression results in the ASTRONOMER study demonstrated that Lp(a) was associated with more rapid progression of CAVS in the presence or absence of inflammation, but that inflammation could also play a role in the progression of CAVS. This means that Lp(a) is associated with the incidence and progression of CAVS and that the use of inflammatory markers such as C-reactive protein could help identify CAVS patients at risk of having rapid progression of the disease.
16

Étude du débalancement des acides gras dans les HDL et LDL chez les porteurs du polymorphisme de l’apolipoprotéine E Ɛ4

Dang, Marie Thuy Mai January 2014 (has links)
Résumé : L’apolipoprotéine E (apoE) joue un rôle important dans le transport des acides gras (AG) via les lipoprotéines. Cependant, il existe possiblement une perturbation dans l’homéostasie des AG au niveau des lipoprotéines chez les porteurs du génotype de l’apolipoprotéine E epsilon 4 (E4+). L’objectif de cette étude est de déterminer le profil en AG dans les lipoprotéines de hautes et de faibles densités (HDL et LDL) chez les E4+ et les non-porteurs (E4-), pendant une supplémentation en AG oméga-3 (n-3) de 28 jours. Matériels et Méthodes: 80 participants (34 hommes et 46 femmes) en santé, âgés entre 20-35 ans, ont consommé 1,6 g/jour d’AG n-3 sur une période de 28 jours. Des prélèvements sanguins à jeun ont été récoltés chaque semaine. Les lipoprotéines ont été séparées par ultracentrifugation sur gradient discontinu de sucrose. Les lipides totaux des particules de HDL et de LDL ont été analysés par chromatographie en phase gazeuse. Les génotypes de l’APOE (E4+ ou E4-) ont été déterminés par la méthode de polymorphisme de longueur des fragments de restriction (RFLP) et les données ont été analysées par logiciel SAS à l’aide d’une procédure MIXED. Résultats: Les caractéristiques anthropométriques et habitudes de vies ne variaient pas significativement entre les E4+ et E4-. Le ratio d’AG n-6/n–3 était environ 17% plus élevé chez les E4+ dans les LDL (P = 0.043) pendant la supplémentation. Ceci peut être attribuable au niveau plus élevé d’AG n-6, sans changement dans le niveau d’AG n-3 chez les E4+. Une interaction génotype × temps a été trouvée pour l’acide linoléique (LA) dans les HDL ainsi qu’un effet génotype pour les AG n-6 totaux dans les HDL et LDL (P ≤ 0.05). De plus, l’acide palmitique (PA) et palmitoléïque (PAL) est plus bas chez les E4+ comparativement aux E4-. Conclusion: Le débalancement de la distribution des AG dans les HDL et LDL chez les E4+ peut être causé par une altération de la spécificité de la β-oxydation des AG chez les E4+. Plus d’investigation doit être faite à cet égard afin de confirmer ces hypothèses.
17

Le système de sécrétion de type II Hxc de P. aeruginosa, caractérisation et étude fonctionnelle de la liposécrétine HxcQ / The Pseudomonas Aeruginosa type II secretion system, Hxc : characterization and functional study of the liposecretin HxcQ

Viarre, Véronique 25 June 2010 (has links)
La bactérie Gram négative Pseudomonas aeruginosa produit un grand nombre d’exoprotéines remplissant de multiples fonctions. Pour rejoindre la surface ou le milieu extracellulaire, ces exoprotéines doivent franchir successivement la membrane interne, le périplasme et la membrane externe. De multiples systèmes de sécrétion ont été mis en place par P.aeruginosa pour réaliser ces différentes étapes. Ainsi, les exoprotéines peuvent traverser l’enveloppe par le système le plus approprié à leur transport. Un de ces systèmes, le système de sécrétion de type II (T2SS) est présent en deux exemplaires. Ces deux T2SS, complets et fonctionnels ont été appelés Xcp (« extracellular deficient protein ») et Hxc (« Homologue toXcp »). Si les éléments constitutifs des T2SSs sont bien identifiés, leur assemblage au sein de l’enveloppe ainsi que leur mode de sécrétion sont très peu documentés. Le modèle communément admis suggère cependant l’existence d’une plateforme de membrane interne, d’un composant demembrane externe et d’un pseudopilus, qui va tel un piston, pousser les substrats au travers du pore formé par l’unique composant de membrane externe, la sécrétine. Les sécrétines formentdans la membrane externe de larges pores homo-multimériques de 12 à 14 monomères.L’adressage et l’assemblage de telles structures nécessitent en général l’implication d’une petite lipoprotéine, connue sous le nom de pilotine. A ce jour, aucune protéine de ce type n’est connue pour assister les multiples sécrétines répertoriées chez P. aeruginosa dans leur adressage à lamembrane externe. Ce travail de thèse à principalement porté sur le second T2SS de P.aeruginosa, le système Hxc. Nous avons en particulier démontré que la sécrétine du système Hxc,HxcQ ne dépendait d’aucune pilotine pour son adressage à la membrane externe et que cette sécrétine était une lipoprotéine dont l’ancre lipidique N-terminale jouait le rôle de pilotine. / The Gram negative bacteria Pseudomonas aeruginosa produces a large number of exoproteins that have multiple functions. To reach the cell surface or the extracellular medium, an exoprotein must successively cross the inner membrane, the periplasm and the outer membrane.P. aeruginosa has developed a number of secretion systems that carry out these different steps.Thus, a specific exoprotein will cross the envelope using the most suitable secretion system. Oneof these systems, the type II secretion system (T2SS), is present in two copies on the P.aeruginosa genome. Both T2SS are complete and functional, and have been named Xcp(« extracellular deficient protein ») and Hxc (« Homologue to Xcp »). While the different components that make up each T2SS have been clearly identified, their assembly in the envelopeand their mode of secretion are poorly documented. Nevertheless, the commonly acceptedworking model suggests the existence of an inner membrane platform, a component in the outer membrane, and a pseudopilus which, acting as a piston, pushes the substrate through a pore formed by the sole component of the outer membrane, the secretin. Secretins form large homomultimeric pores (12 to 14 monomers) in the outer membrane. Targeting and assembly ofsuch structures requires the involvement of a small lipoprotein known as pilotin. To date, no suchprotein is known to assist the targeting of P. aeruginosa secretins to the outer membrane. This thesis work has mainly focused on the second T2SS of P. aeruginosa, the Hxc system. One of ourmajor findings is that the outer membrane targeting of the Hxc secretin, HxcQ, does not dependon any pilotin, but that instead HxcQ is a lipoprotein with a lipid anchor that acts as a pilotin.
18

Étude de la biogénèse des lipoprotéines chez Corynebacterium glutamicum / Triage and biogenesis of the lipoproteins in Corynebacterium glutalicum

Mohiman, Niloofar 19 December 2012 (has links)
En raison de leur contribution à la virulence bactérienne, les lipoprotéines et les membres de la voie de biogenèse des lipoprotéines représentent des cibles prometteuses pour la recherche de nouveaux antibiotiques. À la suite de translocation à travers la membrane interne la future lipoprotéine ancrée dans la membrane par l’intermédiaire de son peptide signal, va subir en premier lieu l’addition de sn-1,2-diacylglyceryle sur la fonction sulfhydryle de la future cystéine N-terminale de la lipoprotéine mature. Cette modification est catalysée par Lgt (prolipoprotéin diacylglycérol transférase) avant même que le peptide signal de la lipoprotéine ne soit clivé par Lsp (lipoprotéine signal peptidase). L’action de la peptidase permet de libérer l’amine terminale de la cystéine qui pourra alors, chez les bactéries à Gram-négatif, être acylée par Lnt (lipoprotéin aminoacyl transférase). La présence d’un apolipoprotéine N-acyltransférase (Ppm2-Ms) impliquées dans la N-acylation de LppX a récemment été montrée chez M. smegmatis. Ppm2-Ms fait partie de l'opéron ppm dans laquelle ppm1, une synthase polyprénol-monophosphomannose, a été révélée essentielle dans la synthèse lipoglycans mais dont la fonction dans la biosynthèse des lipoprotéines est totalement inconnue. Afin de clarifier le rôle de l'opéron ppm dans la biosynthèse des lipoprotéines, nous avons étudié les modifications post-traductionnelles de deux modèles (lipoprotéines AmyE et LppX) dans les mutants Δppm1 et Δppm2 chez C. glutamicum.Nos résultats montrent que les deux lipoprotéines modèles sont ancrées dans la membrane et que leurs extrémités N-terminales sont N-acylés par Ppm2-Cg. Le peptide N-teminal acylé de LppX a été également modifié par des groupements d'hexose. Cette O-glycosylation est localisée dans le peptide N-terminal de LppX mais absente dans le mutant Δppm1. Tandis compromise en l'absence de Cg-PPM2, O-glycosylation LppX pourrait être rétabli lorsque Cg-PPM1, Cg-PPM2 ou l'homologue Mt-ppm1 de M. tuberculosis a été surexprimée. Ensemble, ces résultats montrent pour la première fois que Ppm1-Cg (Ppm synthase) et Ppm2-Cg (Lnt) fonctionnent dans une voie de biosynthèse commune dans laquelle la glycosylation et la N-acylation des lipoprotéines sont étroitement couplés / Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum ∆ppm1 and ∆ppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated Ntermina peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the ∆ppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX Oglycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.
19

Rôle des lipoprotéines associées au virus de l'hépatite C et des microtubules dans l'entrée du virus dans la cellule et l'établissement de l'infection

Walic, Marine 18 February 2010 (has links) (PDF)
L'hépatite C reste un problème majeur de santé publique. Malgré la mise au point d'un modèle de réplication du virus de l'hépatite C (VHC) in vitro, les mécanismes conduisant à l'infection restent encore mal connus. Le VHC est sécrété et circule dans le sérum associé à des lipoprotéines. L'importance des lipoprotéines pour le cycle viral nous a conduits à étudier le rôle de la lipoprotéine lipase (LPL), une enzyme lipolytique, dans l'infection de la cellule par le VHC. Nous avons montré que la LPL potentialise l'attachement et l'internalisation du virus par un mécanisme similaire à la clearance hépatique des lipoprotéines. La LPL dimérique forme un pont entre les lipoprotéines associées au virus et les HSPG à la surface des cellules. Néanmoins son action conduit à une inhibition de l'infection par les souches virales JFH-1 et J6/JFH-1 produites en culture cellulaire et dans les hépatocytes humains greffés à des souris chimériques uPA-SCID. L'analyse par ultracentrifugation en gradient d'iodixanol des virus produits in vitro et in vivo a montré la présence de deux populations virales : la première, de densité très faible, est beaucoup plus infectieuse que la seconde, de densité plus élevée. L'infection in vitro par ces deux populations virales est inhibée par la LPL. La LPL représente donc un nouvel inhibiteur de l'infection par le VHC. Nous avons également démontré que la présence d'un réseau de microtubules intact et dynamique est cruciale pour l'entrée du VHC et les étapes post-fusion qui mènent à l'infection. Enfin, nous avons mis en évidence une interaction de la protéine de capside avec les tubulines α et β, conduisant à une augmentation de la polymérisation des microtubules. Ces observations suggèrent que le VHC pourrait utiliser les mécanismes de polymérisation des microtubules pour établir l'infection, et la protéine de capside jouer un rôle essentiel dans ce processus. Les nouvelles approches antivirales pourraient donc cibler les éléments du cytosquelette et/ou des lipoprotéines associées aux particules virales.
20

Effet de l'activation de l'AMPK sur le métabolisme des lipoprotéines chez la souris

Gaougaou, Ghizlane 05 1900 (has links) (PDF)
L'activation de l'« Adenosine monophosphate activated protein kinase » (AMPK), enzyme clé de la régulation du métabolisme énergétique, permet une inhibition de certaines enzymes limitantes du métabolisme des acides gras et du cholestérol. Le 5-aminoimidazole-4carboxiamide-1-β-D-ribofuranoside (AICAR) et la metformine, médicaments largement utilisés pour activer l'AMPK, améliorent l'hyperglycémie, augmentent la captation du glucose périphérique et favorisent l'utilisation et la dégradation des acides gras, ce qui permet la diminution des risques du développement de maladies cardiovasculaires liées au diabète. L'étude de certains effets de l'activation de l'AMPK sur le métabolisme lipidique serait essentielle pour pouvoir mieux comprendre l'interaction entre les métabolismes lipidique et glucidique. L'objectif de ce travail était de savoir si, in vivo, le métabolisme des lipoprotéines réagit à l'activation de l'AMPK. Le traitement des souris avec 0,5 mg/g de poids corporel d'AICAR ou de metformine pendant 7 ou 14 jours a permis d'observer notamment pour le traitement à l'AICAR pendant 14 jours, une diminution de 17,5% du cholestérol plasmatique, de 21,1% du cholestérol associé aux HDL et une augmentation de 47,6% du cholestérol associé aux LDL. L'activation de l'AMPK a augmenté le niveau protéique de récepteurs des lipoprotéines de faible densité (rLDL) suite à l'augmentation de son facteur de transcription « sterol regulatory element binding protein 2 » (SREBP-2) et a diminué celui de SR-BI « Scavenger receptor class B type I » et de sa protéine adaptatrice PDZK1. Les taux protéiques de SR-BI et du rLDL corrélaient avec ceux de leurs ARNm. La protéine SR-BII a augmenté probablement pour contrebalancer la diminution de SR-BI. La diminution de l'expression de SR-BI a provoqué une diminution de 37% de la captation sélective des EC des lipoprotéines de haute densité (HOL) in vivo chez la souris traitée avec 0,5 mg/g de poids corporel d'AICAR. Les protéines ABCA1 (intervenant dans l'efflux de cholestérol vers les HDL) et HNF4a (responsable de l'expression de l'apoA-I qui compose les HDL) ont diminué et seraient peut-être responsables de la diminution du cholestérol associé aux HDL. L'ARNm de PCSK9 « Proprotein convertase subtilisin/kexin type 9 » a augmenté. De plus, ni l'augmentation de rLDL ni la diminution de SR-BI n'ont pu expliquer l'augmentation du taux de cholestérol associé aux LDL. Au niveau du foie, principal tissu responsable du métabolisme de lipoprotéines, des diminutions de 26% des triglycérides et de 13,4% du cholestérol ont été observées. L'activation de l'AMPK semble donc améliorer le bilan lipidique du foie ainsi que celui du cholestérol plasmatique. Toutefois, la diminution du cholestérol associé aux HDL et l'augmentation de celui associé aux LDL apparaissent défavorables en termes de risque d'événements cardiovasculaires. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : AMPK, récepteurs hépatiques, captation sélective, LDL-EC, lipides hépatiques.

Page generated in 0.1384 seconds