• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 32
  • 26
  • 22
  • 19
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

[pt] EFEITO DA SENSIBILIDADE AO ENTALHE EM CONDIÇÕES DE TRINCAMENTO ASSISTIDO PELO MEIO / [en] NOTCH SENSITIVITY EFFECTS UNDER ENVIRONMENTAL ASSISTED CRACKING CONDITIONS

17 November 2021 (has links)
[pt] A grande maioria dos componentes estruturais possui entalhes que concentram localmente as tensões em torno de suas pontas. O fator de sensibilidade ao entalhe q, muito usado para quantificar o efeito deles em fadiga, pode ser associado à geração de trincas não propagantes quando SL(R)/Kt < σn < SL(R)/Kf, onde SL(R) é o limite de fadiga do material em uma dada razão R = σmin/σmax; Kt = σmax/σn é o fator de concentração de tensões (SCF, de stress concentration factor) do entalhe; σn é a amplitude de tensão nominal aplicada; σmax é a máxima tensão na ponta do entalhe; e Kf = 1 + q(Kt – 1) é o fator de concentração de tensões à fadiga, que quantifica o efeito dos entalhes na resistência à fadiga do componente entalhado. Partindo desse comportamento, recentemente foi desenvolvido um modelo para calcular q considerando a influência do gradiente de tensões à frente da raiz do entalhe no comportamento à fadiga de trincas mecanicamente curtas, usando apenas técnicas apropriadas de análise de tensões e as resistências à fadiga do material: o limite de fadiga e o limiar de propagação de trincas longas. Este modelo, cujas previsões foram validadas por vários experimentos apropriados, considera assim todas as características da geometria do entalhe e do carregamento em q, sem precisar de nenhum parâmetro ajustável. Nesse trabalho, esse critério é estendido para tratar problemas de Trincamento Assistido por Meios Corrosivos (EAC), considerando apropriadamente parâmetros de análise de tensão. O efeito da corrosão é quantificado pela resistência do material ao trincamento por EAC, SEAC, e pelo limiar de propagação em condições de EAC, KIEAC, ambos medidos no ambiente agressivo em questão. Esse modelo em particular prevê a existência de uma sensibilidade ao entalhe qc em problemas de EAC quando SEAC/Kt < σmax < SEAC/[1 + qc(Kt - 1)], que pode ser mecanicamente quantificada por técnicas análogas àquelas utilizadas com sucesso para quantificar q em fadiga. Para comprovar experimentalmente a validade do modelo nestas condições, foi escolhido o par {Alumínio (Al) 2024 recozido – Gálio (Ga)} na temperatura de 35ºC, devido à rapidez da sua reação de trincamento sob EAC, a qual permite que suas propriedades básicas, SEAC and KIEAC, sejam determinados rapidamente. Usando somente a mecânica proposta neste novo modelo e as resistências básicas do material à EAC, 8 corpos de prova entalhados foram projetados para alcançar e suportar a máxima tensão na ponta de seus entalhes duas vezes maiores do que SEAC. O modelo prevê que isso é possível devido à interação do gradiente de tensões à frente da ponta do entalhe com a pequena trinca nele iniciada, que permanece não propagante nessas condições. Como nenhum dos corpos de prova assim projetados falhou nesses testes, pode-se concluir que aqueles ensaios suportam a eficácia do modelo, o qual pode ser bastante útil como ferramenta de dimensionamento mecânico no tratamento do efeito de entalhes em problemas de EAC. / [en] The vast majority of structural components have notches that locally concentrate stresses around their tips. The notch sensitivity factor q, widely used to quantify the effect of such notches on fatigue, can be associated with the generation of non-propagating cracks at the notch tips in fatigue tests when SL(R)/Kt < σn < SL(R)/Kf, where SL(R) is the fatigue limit of the material at a given R = σmin/σmax ratio; Kt = σmax/σn is the stress concentration factor (SCF) of the notch; σn is the amplitude of the nominal stress that loads it; σmax is the maximum stress at the notch tip; and Kf = 1 + q(Kt – 1) is the (effective) fatigue SCF, which quantifies the actual notch effect on the fatigue strength of the notched component. Based on this behavior, a model was recently developed to calculate q considering the influence of the stress gradient ahead of the notch tip on the fatigue behavior of mechanically short cracks, using only proper stress analysis techniques and the basic fatigue properties of the material, its fatigue limit and long crack propagation threshold. This model, whose predictions were validated by various appropriated experiments, considers the entire notch geometry and loading characteristics on q, without the need of any data-fitting parameter. In this study, this criterion is extend to properly treat environmentally assisted cracking (EAC) problems considering stress analysis issues. The corrosion effects are quantified by the material resistance to EAC, SEAC, and by its crack propagation threshold under EAC conditions, KIEAC, both measured in the aggressive environment in question. This model in particular predicts the existence of a notch sensitivity qc in EAC problems as well, when SEAC/Kt < σmax < SEAC/[1 + qc(Kt - 1)], which can be mechanically quantified by techniques analogous to those successfully used to quantify q in fatigue. To experimentally prove the validity of this model under EAC conditions, the pair material/aggressive medium chosen is an annealed 2024 Al alloy and Ga at 35oC, due to its very fast EAC reaction, which allows its basic properties, SEAC and KIEAC, to be quickly determined. Using only the mechanics proposed in this new model and the basic material resistances to EAC, 8 notched test specimens were designed to reach and survive to maxima stresses at the tip of their notches twice as large as SEAC. The model predicts that this is possible due to the interaction of the stress gradient ahead of the notch tip with the small crack initiated there, which is non-propagating under such conditions. Since none of the specimens failed in the designed tests, it can be concluded that they support the effectiveness of the model, which may thus be quite useful as a mechanical tool to treat notch effects in EAC problems.
112

Experimentelle Untersuchung zur Strömungsbeeinflussung mittels elektromagnetischer Bremsen beim kontinuierlichen Strangguss von Stahl

Timmel, Klaus 21 November 2014 (has links)
Beim kontinuierlichen Stranggießen von Stahl werden elektromagnetische Felder zur Strömungsbeeinflussung eingesetzt. In dieser Arbeit wird die Wirkung eines statischen Magnetfeldes auf die Kokillenströmung in einem Modellexperiment untersucht. Das statische Magnetfeld strukturiert die Strömung um, kann lokal die Strömungsgeschwindigkeiten erhöhen und verändert die Ausbildung und Anzahl der für Brammenkokillen typischen großskaligen Wirbel. Es zeigt sich weiterhin, dass die elektrische Leitfähigkeit der Kokillenwände einen entscheidenden Einfluss auf die Wirkung einer elektromagnetischen Bremse hat. Unter isolierenden Wänden werden räumliche Oszillationen des Flüssigmetallstrahles initiiert und es bildet sich zwischen den beiden Kokillenhälften eine asymmetrische Strömung aus. Leitfähige Wände verhindern die Oszillationen und die Kokillenströmung ist symmetrisch. Eine eindeutige bremsende Wirkung der elektromagnetischen Bremse auf den Durchfluss konnte jedoch in beiden Fällen nicht festgestellt werden.
113

Liquid metal flows drive by gas bubbles in a static magnetic field

Zhang, Chaojie 18 January 2010 (has links)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 &amp;lt; Ha &amp;lt; 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
114

Statistical mechanics-based reduced-order modeling of turbulence in reactor systems

Mary Catherine Ross (17879888) 01 February 2024 (has links)
<p dir="ltr">New system-level codes are being developed for advanced reactors for safety analysis and licensing purposes. Thermal-hydraulics of advanced reactors is a challenging problem due to complex flow scenarios assisted by free jets and stratified flows that lead to turbulent mixing. For these reasons, the 0D or 1D models used for reactor plena in traditional safety analysis codes like RELAP cannot capture the physics accurately and introduce a large degree of modeling uncertainty. System-level calculation codes based on the advection-diffusion equation neglect turbulent fluctuations. These fluctuations are extremely important as they introduce higher-order moments, which are responsible for vortex stretching and the passage of energy to smaller scales. Alternatively, extremely detailed simulations with velocity coupling from the Navier-Stokes equations are able to capture turbulence effects accurately using DNS. These solutions are accurate because they resolve the flow into the smallest possible length and time scales (Kolmogorov scale) important to the flow, which makes DNS computationally expensive for simple geometries and impossible at the system level.</p><p dir="ltr">The flow field can be described through a reduced-order model using the principles of statistical mechanics. Statistical mechanics-based methods provide a method for extracting statistics from data and modeling that data using easily represented differential equations. The Kramers-Moyal (KM) expansion method can be used as a subgrid-scale (SGS) closure for solving the momentum equation. The stochastic Burgers equation is solved using DNS, and the DNS solutions are used to calculate the KM coefficients, which are then implemented as an SGS closure model. The KM method outperforms traditional methods in capturing the multi-scale behavior of Burgers turbulence. The functional dependencies of the KM coefficients are also uniform for several boundary conditions, meaning the closure model can be extended to multiple flow scenarios. </p><p dir="ltr">For the case of the Navier-Stokes equations, each particle trajectory tends to follow some scaling law. Kolmogorov hypothesized that the flow velocity field follows a -5/3 scaling in the inertial region where Markovian characteristics can be invoked to model the interaction between eddies of adjacent sizes. This law holds true in the inertial region where the flow is Markovian. For scalar turbulence, the scaling laws are affected by thermal diffusion. If a fluid has a Prandtl number close to one, the thermal behavior is dominated by momentum, so the spectra for velocity and temperature are similar. For small Prandtl number fluids, such as liquid metals, the thermal diffusion dominates the lower scales and the slope of the spectrum shifts from the -5/3 slope to a -3 slope, also called the Batchelor region. System-level thermal hydraulics codes need to be able to capture these behaviors for a range of Prandtl number fluids. The KM-based model can also be used as a surrogate for velocity or temperature fluctuations in scalar turbulence. Using DNS solutions for turbulent channel flow, the KM model is used to provide a surrogate for temperature and velocity signals at different wall locations in the channel for Pr = 0.004, Pr = 0.025, and Pr = 0.71. The KM surrogate matches well for all wall locations, but is not able to capture the viscous dissipation in the velocity signal, or the thermal dissipation in the low Prandtl number cases. The dissipation can be captured by implementing a Gaussian filter.</p><p dir="ltr">Statistical mechanics-based methods are not limited to modeling turbulence in a reactor. Renewable power generation, such as wind, can be modeled using the Ornstein-Uhlenbeck (OU) method, which allows the long-term trends and short-term fluctuations of wind power to be decoupled. This allows for large fluctuations in wind power to be scaled down to a level that a reactor can accommodate safely. </p><p dir="ltr">Since statistical mechanics methods are based in physics, the calculated coefficients provide some information about the inputted signal. In a high-temperature gas-cooled reactor, strong heating can cause flow that is expected to be turbulent to show laminar characteristics. This laminarization results in reduced heat removal. The KM coefficients can be used to classify the laminarization from probed velocity signals more effectively than traditional statistical analyses.</p>
115

Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde Magnetfelder

Koal, Kristina 29 June 2011 (has links) (PDF)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder. Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.
116

Numerische Untersuchung der Rayleigh-Bénard-Konvektion in einem Flüssigmetall unter dem Einfluss einer zeitlich modulierten gezeitenartigen Kraft

Röhrborn, Sebastian 01 September 2023 (has links)
In der vorliegenden Arbeit konnte gezeigt werden, dass die numerischen simulationen einer freien Rayleigh-Bénard-Konvektion und einer rein elektromagnetisch angetriebenen gezeiten-artigen Strömung in einem stehenden zylindrischen Volumen mit einem Seitenverhältnis Г = D/H = 1 und seitlich angelegten Magnetspulen eine gute Übereinstimmung mit entspre-chenden Experimenten aufweisen. Kombiniert man beide Mechanismen und moduliert die Lorentzkraft, so zeigen sich in den Frequenzspektren der Helizität in zwei Halbräumen des Volumens deutliche Maxima an der Modulationsfrequenz. Eine solche Helizitätssynchronisierung durch Gezeitenkräfte wird derzeit als mögliche Erklärung für die hohe Regularität des Sonnendynamos diskutiert. Des Weiteren wird die in freier Konvektion auftretende langsame azimutale Wanderung der Konvektionszelle unterdrückt. Der Schwingungswinkel der azimutalen Schwappbewegung nimmt dabei ab und die in der Strömung dominante Frequenz erhöht sich. Die durch die zwei unterschiedlichen Antriebsmechanismen erzeugten Strömungsstrukturen bleiben in der Strömung eigenständig erhalten und treten in gegenseitige Interaktion.:1. Einleitung 2. Grundlagen 2.1. Rayleigh-Bénard-Konvektion 2.2. MHD - Magnetohydrodynamik 2.3. Wichtige Aspekte des numerischen Modells 3. Modellerstellung 3.1. Geometrie 3.2. Numerisches Modell 3.2.1. Elektromagnetisches Modell in Opera 3.2.2. Modell der Strömungsberechnung in OpenFOAM 4. Ergebnisse 4.1. Ergebnisse der freien Rayleigh-Bénard-Konvektion 4.2. Ergebnisse der nichtmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient 4.3. Ergebnisse der zeitmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient 4.4. Ergebnisse der elektromagnetisch beeinflussten Rayleigh-Bénard-Konvektion 4.4.1. Auswirkung der elektromagnetischen Beeinflussung auf die Strömungsstruktur 4.4.2. Vergleich ausgewählter Ergebnisse der numerischen Untersuchung und des Experimentes 4.4.3. Auswirkung der elektromagnetischen Beeinflussung auf die Helizität 5. Zusammenfassung und Fazit
117

Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde Magnetfelder

Koal, Kristina 27 May 2011 (has links)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder. Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.

Page generated in 0.0647 seconds