331 |
Estudo teórico e experimental das ações em silos horizontais / Theoretical and experimental study of loads in horizontal silosFrancisco Carlos Gomes 19 July 2000 (has links)
O projeto seguro e econômico das estruturas de armazenamento é função das máximas ações impostas e da resistência destas estruturas de suportar tais ações, observadas as combinações mais desfavoráveis. Entre as ações consideradas nos cálculos dos silos horizontais (peso próprio, peso de equipamentos, vento, recalques diferenciais de apoios, impacto de veículos, explosões, etc), a de maior importância é a causada pelo empuxo dos produtos armazenados e que foi objeto de estudo nesta pesquisa. Este trabalho foi realizado em duas etapas, teórica e experimental, procurando avaliar estas ações com base em teorias e métodos de cálculo de diversos autores. Na tremonha do silo, as pressões foram avaliadas através do método de cálculo proposto por Safarian & Harris, da teoria de Walker e da Norma Australiana AS 3774. Nas paredes, foram avaliadas as pressões de acordo com as teorias de Airy, Reimbert & Reimbert, Coulomb e Rankine e da norma americana ANSI/96. Os modelos teóricos foram estudados e comparados com os resultados obtidos através de medições diretas das pressões em modelo piloto e silo horizontal em escala real com a determinação da relação entre as pressões verticais e horizontais (K). Dos resultados obtidos propõe-se um novo método de cálculo com base em um modelo empírico para a determinação das pressões horizontais nestas unidades. / The safe and economic design of storage structures is a function of the loads and of the strenght of these structures, considering unfavorable loads combinations. Among the loads considered in the calculations of the horizontal silos, the most important load is due stored products. Silos are usually designed on the basis of simple theory which is used to predict horizontal pressures on the walls and hoppers. The pressures generally depend on many factors including the physical properties of the stored materials, the flow pattern and also the method of operating the silo. This work is divided in two parts in order to evaluate these loads based in theories and international codes.The silo hopper was evaluate by Walker\'s theory and by AS 3774-1996 code. The silo walls was evaluete by theories of Airy, Rankine, Reimbert & Reimbert, Coulomb, Safarian & Harris and ANSI (1996) code. The theoretical models were studied and compared with the results obtained through pressure measurements in a real and a pilot silos. From the results we proposed a new empiric design method to evaluate the horizontal pressures in the silos wall.
|
332 |
Análise numérica da dilatação linear de tubulações durante o regime de transiente térmico. / Numerical analysis of linear expansion of pipes during the thermal transient.Luis Fernando Silva Moura 31 August 2015 (has links)
A dilatação térmica é um problema com o qual os engenheiros de tubulação frequentemente precisam lidar, já que parte do papel destes prossionais é controlar as dilatações lineares totais e minimizar tensões e forças associadas a este fenômeno físico. O projeto de sistemas de tubulação é guiado por normas, sendo a ASME B31.3 (2010) certamente a mais utilizada no Brasil e nos Estados Unidos. Para a referida norma o sistema de tubulação, do ponto de vista térmico, é avaliado com base em uma temperatura de projeto constante e uniforme denida pelos critérios desta norma, temperatura esta normalmente estabelecida com base na temperatura de regime permanente. Estes critérios são sucientes para garantir a integridade estrutural da tubulação em virtude da forma como as tensões admissíveis e atuantes estão estabelecidas, contudo, a norma é omissa em relação ao transiente térmico e a dilatação linear da tubulação durante esse período. Tal dilatação poderá estar associada a forças transmitidas pela tubulação a equipamentos e estruturas, forças essas negligenciadas pela ASME B.31.3 e a literatura em geral. Esse trabalho apresenta as equações envolvidas no problema do transiente térmico de tubulações e, baseando-se nos resultados de simulações numéricas e na mecânica classicamente adotada pela Engenharia de Tubulação para computar forças, faz uma discussão a respeito das forças associadas à dilatação no período do transiente térmico. Vericou-se que quanto maior a velocidade do escoamento, maior o número de Nusselt e maior a difusividade térmica do material do tubo, maior será a taxa de aquecimento da tubulação e que, quanto maior essa taxa de aquecimento e o coeciente de dilatação, maior será a taxa de dilatação linear do tubo. Além disso, a força associada à dilatação linear passa a ser transmitida ao ponto xo (ancoragem ou trava) de forma abrupta e aumenta de forma intermitente até o seu máximo valor, para então cair ao seu mínimo valor de forma extremamente abrupta, sendo este valor mínimo o obtido nas análises usuais de sistemas de tubulação. / Thermal expansion is a problem the pipe engineers often have to deal with, since it is important to control the total linear thermal expansion and minimize stresses and forces associated with this physical phenomenon. The design of pipe systems is guided by standards, being ASME B31.3 (2010) certainly the most used in Brazil and the United States. For this standard the pipe system, from the thermal standpoint, is evaluated based on a constant and uniform design temperature, being this normally referenced by the steady state value. These criteria are sucient to ensure the pipe structural integrity due to the way the admissible and acting stresses are established; however, the standard is silent regarding the thermal transient and the pipe linear thermal expansion during this period. Such thermal expansion may be associated with forces transmitted by the pipe to equipment and structures, neglected by ASME B.31.3 and the literature. This work presents the equations involved in the pipe thermal transient problem. Based on the results of numerical simulations and the procedures normally used by Pipeline Engineering to compute forces, a discussion is made about the forces associated with the thermal expansion in the period of the thermal transient. It was found that the higher the ow velocity, the Nusselt number and the thermal diusivity of the pipe material, the higher the pipe heating rate. Besides, it was found that the higher the heating rate and the thermal expansion coecient, the higher the linear thermal expansion rate of the pipe. Moreover, the force associated with the linear thermal expansion starts to be transmitted to the pipe xed point (anchor or stop) in an abrupt way and increases intermittently until its maximum value, then falls to its minimum value in an extremely abrupt way, being this minimum value the load obtained in the usual pipe load analysis.
|
333 |
Identification du comportement en torsion à fort facteur d’avancement des pales d’hélicoptère conventionne : application à la réduction des efforts de commandes sur une formule hybride haute vitesse de type X3 / Torsionnal behavior identification of a conventionnal helicopter blade and rotor at high avdance ratio : application to the reduction of control loads on the X3-type hybrid helicopterParis, Manuel 05 November 2014 (has links)
L'augmentation de la vitesse de croisière des hélicoptères à architecture conventionnelle (rotor principal et rotor anticouple) atteint aujourd'hui une asymptote. Le concept X3, associant 2 hélices et une aile pour alléger la charge du rotor principal, propose une solution viable économiquement, qui s'appuie sur l'utilisation de technologies éprouvées telles que le rotor Spheriflex® du Dauphin. Les essais en vol menés sur le démonstrateur X3 ont montré un bon comportement en performances et en qualités de vol de ce type de rotor, mais un niveau de charges très importants dans les commandes de vol. Pour limiter la masse à vide, la solution de surdimensionner toutes les pièces mécaniques n'est pas envisageable. Ce travail de thèse propose d'étudier les opportunités de réduction des efforts de commandes.Afin de pouvoir réduire ces efforts, il a été nécessaire de comprendre leur origine et de proposer une modélisation qui permette de les prédire. Des mesures expérimentales réalisées sur le démonstrateur X3 ont permis d'identifier les excitations aérodynamiques et le comportement dynamique des pales en torsion. Les phénomènes responsables de l'augmentation des efforts de commande ont été identifiés, ce qui a permis de corriger le modèle de calcul des efforts de commande HOST actuellement utilisé par Airbus Helicopters.A partir du logiciel HOST corrigé et de la compréhension des phénomènes physiques, des solutions technologiques pour réduire les efforts de commandes ont été étudiées. Deux familles de solutions sont alors considérées : l'optimisation du système de commandes de vol et la réduction des efforts dans les bielles de pas. L'optimisation du système de commandes de vol permet d'obtenir une réduction significative des efforts de commandes grâce à un algorithme d'optimisation de l'architecture de placement des servocommandes. L'étude de la réduction des efforts dans les bielles de pas montre que le choix de l'équilibre appareil conduit à des opportunités de réduction des efforts de commandes, alors que la modification du design de pale n'apporte pas de réduction notable et engendre une diminution des performances en stationnaire. / Nowadays, the increase of cruise speed for conventional helicopters (main rotor and anti-torque rear rotor) reaches an asymptote. The X3 concept proposed by Airbus Helicopters is a hybrid helicopter combining 2 propellers at the tip of small wings in order to unload the main rotor. This solution is economically viable because it reuses well-proven technologies such as the Spheriflex rotor, already used on the Dolphin family for many years. X3 flight tests have shown a good behavior of the rotor concerning performances as well as handling qualities, but control loads in the rotor system were significantly higher in cruise conditions than for conventional helicopters. In order to save the payload, over-sizing of the mechanical parts in order to withstand these loads can't be an appropriate solution. The work presented in this thesis deals with the problematic of control loads reduction.In order to reduce the control loads, the first step is to highlight the roots of these loads and to get a predictive tool over the whole flight domain. Experimental measurements from X3 flight tests give the aerodynamic loads on the blade sections, leading to understand the blades torsional dynamic behavior in several flight test cases (cruise, turns and high speed flight). Phenomena responsible for the increase of control loads are then identified, and the rotor computation tool HOST used at Airbus Helicopters is corrected to predict accurately control loads over the conventional as well as the high speed helicopter flight domain.The corrected rotor computation tool HOST, associated with the physical comprehension of the blade torsional dynamics, is used to quantify the possible solutions proposed for control loads reduction. Two main ways are studied: the optimization of the control system architecture and the reduction of pitch link loads. The optimization of control system architecture shows a dramatic reduction of control loads in the servo actuators and in the non-rotating scissors, thanks to an optimization algorithm developed during this thesis. The reduction of pitch link loads study shows that the optimization of the helicopter equilibrium leads to drastic reduction, whereas the modification of blade design does not show any significant reduction even at high speed.
|
334 |
Pilot modelling for airframe loads analysisLone, Mohammad Mudassir January 2013 (has links)
The development of large lightweight airframes has resulted in what used to be high frequency structural dynamics entering the low frequency range associated with an aircraft’s rigid body dynamics. This has led to the potential of adverse interactions between the aeroelastic effects and flight control, especially unwanted when incidents involving failures or extreme atmospheric disturbances occur. Moreover, the pilot’s response in such circumstances may not be reproducible in simulators and unique to the incident. The research described in this thesis describes the development of a pilot model suitable for the investigation of the effects of aeroelasticity on manual control and the study of the resulting airframe loads. After a review of the state-ofthe- art in pilot modelling an experimental approach involving desktop based pilot-in-the-loop simulation was adopted together with an optimal control based control-theoretic pilot model. The experiments allowed the investigation of manual control with a nonlinear flight control system and the derivation of parameter bounds for single-input-single-output pilot models. It was found that pilots could introduce variations of around 15 dB at the resonant frequency of the open loop pilot-vehicle-system. Sensory models suitable for the simulation of spatial disorientation effects were developed together with biomechanical models necessary to capture biodynamic feedthrough effects. A detailed derivation and method for the application of the modified optimal control pilot model, used to generate pilot control action, has also been shown in the contexts of pilot-model-in-the-loop simulations of scenarios involving an aileron failure and a gust encounter. It was found that manual control action particularly exacerbated horizontal tailplane internal loads relative to the limit loads envelope. Although comparisons with digital flight data recordings of an actual gust encounter showed a satisfactory reproduction and highlighted the adverse affects of fuselage flexibility on manual control, it also pointed towards the need for more incident data to validate such simulations.
|
335 |
Computational Evaluation of Wind Loads on Low- and High- Rise BuildingsDagnew, Agerneh 29 August 2012 (has links)
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses.
To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions.
With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
|
336 |
Applications Of Method Of Characteristics And Upper Bound Limit Analysis To Different Bearing Capacity ProblemsGhosh, Priyanka 12 1900 (has links) (PDF)
No description available.
|
337 |
Wave Loads on a Submerged Intake Structure in the Surf ZoneHecimovich, Mark M.L. January 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure.
The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
|
338 |
Finite Element Analysis of the Wind - Uplift Resistance of Roof Edge ComponentsDabas, Maha January 2013 (has links)
Wind-induced damages on low-slope roofs are a major and common problem that many buildings located in high wind areas suffer from. Most of these damages are initiated when the metal roof edge fails first, leading to overall roof failure. This is because peak wind pressures occur at the edges and corners of low-slope roof buildings. Currently, there are not enough wind design guidelines for the Canadian roofing community to quantify the dynamic wind uplift resistance of the roof edge system. The objective of this research is to evaluate the effect of wind-induced loads on roof edges using a finite element model, verify the numerical results with those obtained from controlled experiments, and perform parametric investigations for various design variables. In this research, the overall roof edge system was modelled using the commercial finite element software package ABAQUS, by simulating the roof edge system with shell elements and applying a uniform static pressure against the face of the edge cleat or coping. Results of the modelling were compared to the experimental ones in terms of deflection of the coping under uniform pressure. The results of the numerical model and the experiments show a good agreement. Furthermore, a parametric analysis of the system was conducted under the effect of varying parameters. i.e., coping gauge, nail spacing, coping and cleat length and wind and thermal load application.
|
339 |
Life Cycle Assessment for Building Products - The significanse of the usage phasePaulsen, Jacob January 2001 (has links)
<p>NR 20140805</p>
|
340 |
Hybrid Power System Intelligent Operation and Protection Involving Distributed Architectures and Pulsed LoadsMohamed, Ahmed A 21 March 2013 (has links)
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system.
To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators.
The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
|
Page generated in 0.0364 seconds