• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Support temps-fréquence d'un signal inconnu en présence de bruit additif gaussien

Huillery, Julien 09 July 2008 (has links) (PDF)
Le travail présenté dans ce mémoire est dédié à la localisation d'un signal dans le plan temps-fréquence. Plus précisément, nous proposons de déterminer le support temps-fréquence d'un signal d'intérêt, non stationnaire, déterministe et inconnu, noyé dans un bruit gaussien additif, centré et de fonction d'autocorrélation inconnue. Le support temps-fréquence accessible d'un signal est défini comme l'ensemble des points temps-fréquence pour lesquels le signal d'intérêt admet une énergie au moins supérieure à celle du bruit. De cette définition naîssent deux éléments qu'il est nécessaire de préciser : quel est l'énergie du bruit d'une part et que signifie "au moins supérieure" d'autre part? Dans tout ce travail, le spectrogramme est choisi pour représenter les signaux dans le plan temps-fréquence.<br /><br />Nous choisissons de résoudre ce problème de localisation au moyen d'un test binaire d'hypothèses, formulé en chaque point du plan temps-fréquence. Le seuil de détection correspondant à ce test doit alors être déterminé : d'après les lois de probabilité des coefficients du spectrogramme d'une part, en lien avec la puissance du bruit d'autre part et, enfin, selon un critère de détection approprié.<br /><br />La première étude concerne le comportement statistique des coefficients du spectrogramme. Dans le contexte d'un bruit non blanc et non stationnaire, la densité de probabilité des observations est ainsi formulée.<br /><br />La densité specrale de puissance du bruit apparaît naturellement comme l'un des paramètres de cette densité de probabilité. Dans une seconde étude, une méthode d'estimation de ce bruit est proposée. Elle se base sur le comportement statistique des plus petits coefficients du spectrogramme.<br /><br />Cet ensemble de connaissances nous permet finalement de résoudre le test d'hypothèses dont la solution naturelle au sens du maximum de vraisemblance fait apparaître le rapport d'énergie entre le signal et le bruit en chaque point du plan temps-fréquence. Ce rapport signal sur bruit local permet dès lors de préciser la condition "au moins supérieure" relative au support temps-fréquence accessible du signal.<br /><br />L'algorithme de localisation temps-fréquence qui résulte de ce travail permet finalement de retenir le support temps-fréquence du signal d'intérêt sur l'ensemble duquel le rapport signal sur bruit est supérieur à une valeur choisie a priori.
2

Détection robuste de signaux acoustiques de mammifères marins / Robust detection of the acoustic signals of marine mammals

Dadouchi, Florian 08 October 2014 (has links)
Les océans subissent des pressions d'origine anthropique particulièrement fortes comme la surpêche, la pollution physico-chimique, et le bruit rayonné par les activités industrielles et militaires. Cette thèse se place dans un contexte de compréhension de l'impact du bruit rayonné dans les océans sur les mammifères marins. L'acoustique passive joue donc un rôle fondamental dans ce problème. Ce travail aborde la tâche de détection de signatures acoustiques de mammifères marins dans le spectrogramme. Cette tâche est difficile pour deux raisons : 1. le bruit océanique a une structure complexe (non-stationnaire, coloré), 2. les signaux de mammifères marins sont inconnus et possèdent eux aussi une structure complexe (non-stationnaires bande étroite et/ou impulsionnels). Le problème doit donc être résolu de manière locale en temps-fréquence, et ne pas faire d'hypothèse a priori sur le signal. Des détecteurs statistiques basés uniquement sur la connaissance des statistiques du bruit dans le spectrogramme existent, mais souffrent deux lacunes : 1. leurs performances en terme de probabilité de fausse alarme/ probabilité de détection se dégradent fortement à faible rapport signal à bruit, et 2. ils ne sont pas capables de séparer les signaux à bande étroite des signaux impulsionnels. Ce travail apporte des pistes de réflexion sur ces problèmes.L'originalité de ce travail de thèse repose dans la formulation d'un test d'hypothèse binaire prenant explicitement en compte l'organisation spatiale des pics temps-fréquence. Nous introduisons une méthode d'Analyse de la Densité des Fausses Alarmes (FADA) qui permet de discriminer les régions temps-fréquence abritant le signal de celles n'abritant que du bruit. Plus précisément,le nombre de fausses alarmes dans une région du plan est d'abord modélisé par une loi binomiale, puis par une loi binomiale corrélée, afin de prendre en considération la redondance du spectrogramme. Le test d'hypothèse binaire est résolu par une approche de Neyman-Pearson. Nous démontrons numériquement la pertinence de cette approche et nous la validons sur données réelles de mammifères marins disposant d'une grande variété de signaux et de conditions de bruit. En particulier, nous illustrons la capacité de FADA à discriminer efficacement le signal du bruit en milieu fortement impulsionnel. / The oceans experience heavy anthropogenic pressure due to overfishing, physico-chemical pollution, and noise radiated by industrial and military activities. This work focuses on the use of passive acoustic monitoring of the oceans, as a tool to understand the impact of radiated noise on marine ecosystems, and particularly on marine mammals. This work tackles the task of detection of acoustical signals of marine mammals using the spectrogram. This task is uneasy for two reasons : 1. the ocean noise structure is complex (non-stationary and colored) and 2. the signals of interest are unknown and also shows a complex structure (non-stationary narrow band and/or impulsive). The problem therefore must be solved locally without making a priori hypothesis on the signal. Statistical detectors only based on the local analysis of the noise spectrogram coefficients are available, making them suitable for this problem. However, these detectors suffer two disadvantages : 1. the trade-offs false alarm probability/ detection probability that are available for low signal tonoise ratio are not satisfactory and 2. the separation between narrow-band and impulsive signals is not possible. This work brings some answers to these problems.The main contribution of this work is to formulate a binary hypothesis test taking explicitly in account the spatial organization of time-frequency peaks. We introduce the False Alarm Density Analysis (FADA) framework that efficiently discriminates time-frequency regions hosting signal from the ones hosting noise only. In particular the number of false alarms in regions of the binary spectrogram is first modeled by a binomial distribution, and then by a correlated binomial distribution to take in account the spectrogram redundancy. The binary hypothesis test is solved using a Neyman-Pearson criterion.We demonstrate the relevance of this approach on simulated data and validate the FADA detector on a wide variety of real signals. In particular we show the capability of the proposed method to efficiently detect signals in highly impulsive environment.
3

Modélisation et simulation d'une chambre réverbérante à brassage de modes à l'aide de la méthode des différences finies dans le domaine temporel

Petit, Frédéric 10 December 2002 (has links) (PDF)
Le développement des moyens de communications par l'intermédiaire des ondes<br /> électromagnétiques connaît une croissance sans précédent depuis quelques années, grâce<br /> notamment au développement de la téléphonie mobile. La chambre réverbérante est un<br /> moyen d'essais qui permet d'étudier l'influence de ces ondes électromagnétiques sur un<br /> appareil électronique particulier. Cependant, le fonctionnement d'une chambre<br /> réverbérante étant complexe, il est primordial de procéder à des simulations afin de<br /> déterminer quels sont les paramètres cruciaux entrant en jeu.<br /> <br /> Le travail de cette thèse consiste à modéliser et à simuler le fonctionnement d'une<br /> chambre réverbérante à l'aide de la méthode des différences finies dans le domaine<br /> temporel. Après une brève étude portant sur quelques résultats de mesures de champ et<br /> de puissances effectuées dans une chambre réverbérante, le chapitre~2 aborde les<br /> différents problèmes liés à la modélisation de la chambre. La notion de pertes étant<br /> déterminante pour évaluer le fonctionnement d'une chambre réverbérante, deux méthodes<br /> implémentant ces pertes sont aussi exposées dans ce chapitre. L'étude menée dans le<br /> chapitre~3 consiste à analyser l'influence du brasseur sur les premiers modes propres<br /> de la chambre, ceux-ci pouvant être décalés de plusieurs MHz. Le chapitre~4 présente<br /> des résultats de simulations en hautes fréquences comparés à des résultats<br /> statistiques théoriques. Le cas de la présence d'un objet au sein de la chambre<br /> pouvant perturber le champ est aussi abordé. Enfin, le chapitre~5 montre une<br /> comparaison des résultats statistiques dans le cas où l'on considère plusieurs formes<br /> de brasseurs.

Page generated in 0.0848 seconds