• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanism and Therapeutic Potential of Statin-Mediated Inhibition of Tyrosine Kinase Receptors

Zhao, Tong Tong 27 October 2011 (has links)
Receptor tyrosine kinases (RTK) are key regulators of growth, differentiation and survival of epithelial cells and play a significant role in the development and progression of cancers derived from these tissues. In malignant cells, these receptors and their downstream signalling pathways are often deregulated, leading to cell hyper-proliferation, enhanced cell survival and increased metastatic potential. Furthermore, endothelial expressed RTKs regulate tumor angiogenesis allowing for tumor growth and maintenance by promoting their vascularization. Epithelial malignancies such as squamous cell carcinomas (SCC), non-small cell lung (NSCLC) and malignant mesotheliomas have very limited treatment options when presenting as metastatic disease. RTKs, particularly the epidermal growth factor (EGFR) and the vascular endothelial growth factor (VEGFR) receptors, have been shown to play significant roles in the pathogenesis of these tumor types. Statins are potent inhibitors of HMG-CoA reductase, the rate limiting enzyme of the mevalonate pathway, that are widely used as hypercholesterolemia treatments. The mevalonate pathway produces a variety of end products that are critical for many different cellular pathways, thus, targeting this pathway can affect multiple signalling pathways. Our laboratory has previously shown that lovastatin can induce tumor specific apoptosis especially in SCC and that 23% of recurrent SCC patients treated with lovastatin as a single agent showed disease stabilization in our Phase I clinical trial. Subsequently, our lab was able to demonstrate that lovastatin in combination with gefitinib, a potent inhibitor of the EGFR showed co-operative cytotoxicity when combined (Chapter 2). Furthermore, the pro-apoptotic and cytotoxic effects of these agents were found to be synergistic and to be manifested in several types of tumor cell lines including SCC, NSCLC and glioblastoma. I was able to expand upon these important findings and demonstrated that lovastatin, through its ability to disrupt the actin cytoskeleton, inhibited EGFR dimerization and activation (Chapter 3). This novel mechanism targeting this receptor has clinical implications as lovastatin treatment combined with gefitinib showed co-operative inhibitory effects on EGFR activation and downstream signalling. The RTK family of proteins share similar features with respect to activation, internalization and downstream signalling effectors. I further demonstrated that lovastatin can inhibit the VEGFR-2 in endothelial cells and mesotheliomas, where VEGF and its receptor are co-expressed driving their proliferation, and induces synergistic cytotoxicity in mesothelioma cells in combination with VEGFR-2 tyrosine kinase inhibitors (Chapter 4). These findings suggest that statins may augment the effects of a variety of RTK inhibitors in a similar fashion representing a novel combinational therapeutic approach in a wide repertoire of human cancers. More importantly, based on this work, we initiated a Phase I/II study evaluating high dose rosuvastatin and the EGFR inhibitor tarceva in SCC and NSCLC patients at our institute. This clinical evaluation will provide invaluable data that will play a role in developing this novel therapeutic strategy. Together, the work embodied in this thesis provides a model for the regulation of EGFR/VEGFR-2 activation and signalling by targeting the rho family of proteins that demonstrates a novel mechanism that can be exploited to refine current therapeutic paradigms.
22

Mechanism and Therapeutic Potential of Statin-Mediated Inhibition of Tyrosine Kinase Receptors

Zhao, Tong Tong 27 October 2011 (has links)
Receptor tyrosine kinases (RTK) are key regulators of growth, differentiation and survival of epithelial cells and play a significant role in the development and progression of cancers derived from these tissues. In malignant cells, these receptors and their downstream signalling pathways are often deregulated, leading to cell hyper-proliferation, enhanced cell survival and increased metastatic potential. Furthermore, endothelial expressed RTKs regulate tumor angiogenesis allowing for tumor growth and maintenance by promoting their vascularization. Epithelial malignancies such as squamous cell carcinomas (SCC), non-small cell lung (NSCLC) and malignant mesotheliomas have very limited treatment options when presenting as metastatic disease. RTKs, particularly the epidermal growth factor (EGFR) and the vascular endothelial growth factor (VEGFR) receptors, have been shown to play significant roles in the pathogenesis of these tumor types. Statins are potent inhibitors of HMG-CoA reductase, the rate limiting enzyme of the mevalonate pathway, that are widely used as hypercholesterolemia treatments. The mevalonate pathway produces a variety of end products that are critical for many different cellular pathways, thus, targeting this pathway can affect multiple signalling pathways. Our laboratory has previously shown that lovastatin can induce tumor specific apoptosis especially in SCC and that 23% of recurrent SCC patients treated with lovastatin as a single agent showed disease stabilization in our Phase I clinical trial. Subsequently, our lab was able to demonstrate that lovastatin in combination with gefitinib, a potent inhibitor of the EGFR showed co-operative cytotoxicity when combined (Chapter 2). Furthermore, the pro-apoptotic and cytotoxic effects of these agents were found to be synergistic and to be manifested in several types of tumor cell lines including SCC, NSCLC and glioblastoma. I was able to expand upon these important findings and demonstrated that lovastatin, through its ability to disrupt the actin cytoskeleton, inhibited EGFR dimerization and activation (Chapter 3). This novel mechanism targeting this receptor has clinical implications as lovastatin treatment combined with gefitinib showed co-operative inhibitory effects on EGFR activation and downstream signalling. The RTK family of proteins share similar features with respect to activation, internalization and downstream signalling effectors. I further demonstrated that lovastatin can inhibit the VEGFR-2 in endothelial cells and mesotheliomas, where VEGF and its receptor are co-expressed driving their proliferation, and induces synergistic cytotoxicity in mesothelioma cells in combination with VEGFR-2 tyrosine kinase inhibitors (Chapter 4). These findings suggest that statins may augment the effects of a variety of RTK inhibitors in a similar fashion representing a novel combinational therapeutic approach in a wide repertoire of human cancers. More importantly, based on this work, we initiated a Phase I/II study evaluating high dose rosuvastatin and the EGFR inhibitor tarceva in SCC and NSCLC patients at our institute. This clinical evaluation will provide invaluable data that will play a role in developing this novel therapeutic strategy. Together, the work embodied in this thesis provides a model for the regulation of EGFR/VEGFR-2 activation and signalling by targeting the rho family of proteins that demonstrates a novel mechanism that can be exploited to refine current therapeutic paradigms.
23

Mechanism and Therapeutic Potential of Statin-Mediated Inhibition of Tyrosine Kinase Receptors

Zhao, Tong Tong 27 October 2011 (has links)
Receptor tyrosine kinases (RTK) are key regulators of growth, differentiation and survival of epithelial cells and play a significant role in the development and progression of cancers derived from these tissues. In malignant cells, these receptors and their downstream signalling pathways are often deregulated, leading to cell hyper-proliferation, enhanced cell survival and increased metastatic potential. Furthermore, endothelial expressed RTKs regulate tumor angiogenesis allowing for tumor growth and maintenance by promoting their vascularization. Epithelial malignancies such as squamous cell carcinomas (SCC), non-small cell lung (NSCLC) and malignant mesotheliomas have very limited treatment options when presenting as metastatic disease. RTKs, particularly the epidermal growth factor (EGFR) and the vascular endothelial growth factor (VEGFR) receptors, have been shown to play significant roles in the pathogenesis of these tumor types. Statins are potent inhibitors of HMG-CoA reductase, the rate limiting enzyme of the mevalonate pathway, that are widely used as hypercholesterolemia treatments. The mevalonate pathway produces a variety of end products that are critical for many different cellular pathways, thus, targeting this pathway can affect multiple signalling pathways. Our laboratory has previously shown that lovastatin can induce tumor specific apoptosis especially in SCC and that 23% of recurrent SCC patients treated with lovastatin as a single agent showed disease stabilization in our Phase I clinical trial. Subsequently, our lab was able to demonstrate that lovastatin in combination with gefitinib, a potent inhibitor of the EGFR showed co-operative cytotoxicity when combined (Chapter 2). Furthermore, the pro-apoptotic and cytotoxic effects of these agents were found to be synergistic and to be manifested in several types of tumor cell lines including SCC, NSCLC and glioblastoma. I was able to expand upon these important findings and demonstrated that lovastatin, through its ability to disrupt the actin cytoskeleton, inhibited EGFR dimerization and activation (Chapter 3). This novel mechanism targeting this receptor has clinical implications as lovastatin treatment combined with gefitinib showed co-operative inhibitory effects on EGFR activation and downstream signalling. The RTK family of proteins share similar features with respect to activation, internalization and downstream signalling effectors. I further demonstrated that lovastatin can inhibit the VEGFR-2 in endothelial cells and mesotheliomas, where VEGF and its receptor are co-expressed driving their proliferation, and induces synergistic cytotoxicity in mesothelioma cells in combination with VEGFR-2 tyrosine kinase inhibitors (Chapter 4). These findings suggest that statins may augment the effects of a variety of RTK inhibitors in a similar fashion representing a novel combinational therapeutic approach in a wide repertoire of human cancers. More importantly, based on this work, we initiated a Phase I/II study evaluating high dose rosuvastatin and the EGFR inhibitor tarceva in SCC and NSCLC patients at our institute. This clinical evaluation will provide invaluable data that will play a role in developing this novel therapeutic strategy. Together, the work embodied in this thesis provides a model for the regulation of EGFR/VEGFR-2 activation and signalling by targeting the rho family of proteins that demonstrates a novel mechanism that can be exploited to refine current therapeutic paradigms.
24

Mechanism and Therapeutic Potential of Statin-Mediated Inhibition of Tyrosine Kinase Receptors

Zhao, Tong Tong January 2011 (has links)
Receptor tyrosine kinases (RTK) are key regulators of growth, differentiation and survival of epithelial cells and play a significant role in the development and progression of cancers derived from these tissues. In malignant cells, these receptors and their downstream signalling pathways are often deregulated, leading to cell hyper-proliferation, enhanced cell survival and increased metastatic potential. Furthermore, endothelial expressed RTKs regulate tumor angiogenesis allowing for tumor growth and maintenance by promoting their vascularization. Epithelial malignancies such as squamous cell carcinomas (SCC), non-small cell lung (NSCLC) and malignant mesotheliomas have very limited treatment options when presenting as metastatic disease. RTKs, particularly the epidermal growth factor (EGFR) and the vascular endothelial growth factor (VEGFR) receptors, have been shown to play significant roles in the pathogenesis of these tumor types. Statins are potent inhibitors of HMG-CoA reductase, the rate limiting enzyme of the mevalonate pathway, that are widely used as hypercholesterolemia treatments. The mevalonate pathway produces a variety of end products that are critical for many different cellular pathways, thus, targeting this pathway can affect multiple signalling pathways. Our laboratory has previously shown that lovastatin can induce tumor specific apoptosis especially in SCC and that 23% of recurrent SCC patients treated with lovastatin as a single agent showed disease stabilization in our Phase I clinical trial. Subsequently, our lab was able to demonstrate that lovastatin in combination with gefitinib, a potent inhibitor of the EGFR showed co-operative cytotoxicity when combined (Chapter 2). Furthermore, the pro-apoptotic and cytotoxic effects of these agents were found to be synergistic and to be manifested in several types of tumor cell lines including SCC, NSCLC and glioblastoma. I was able to expand upon these important findings and demonstrated that lovastatin, through its ability to disrupt the actin cytoskeleton, inhibited EGFR dimerization and activation (Chapter 3). This novel mechanism targeting this receptor has clinical implications as lovastatin treatment combined with gefitinib showed co-operative inhibitory effects on EGFR activation and downstream signalling. The RTK family of proteins share similar features with respect to activation, internalization and downstream signalling effectors. I further demonstrated that lovastatin can inhibit the VEGFR-2 in endothelial cells and mesotheliomas, where VEGF and its receptor are co-expressed driving their proliferation, and induces synergistic cytotoxicity in mesothelioma cells in combination with VEGFR-2 tyrosine kinase inhibitors (Chapter 4). These findings suggest that statins may augment the effects of a variety of RTK inhibitors in a similar fashion representing a novel combinational therapeutic approach in a wide repertoire of human cancers. More importantly, based on this work, we initiated a Phase I/II study evaluating high dose rosuvastatin and the EGFR inhibitor tarceva in SCC and NSCLC patients at our institute. This clinical evaluation will provide invaluable data that will play a role in developing this novel therapeutic strategy. Together, the work embodied in this thesis provides a model for the regulation of EGFR/VEGFR-2 activation and signalling by targeting the rho family of proteins that demonstrates a novel mechanism that can be exploited to refine current therapeutic paradigms.
25

Factors contributing to chondroplasia in degenerate rotator cuff disease

Cornell, Hannah R. January 2011 (has links)
Chondroplasia, the development of cartilage-like characteristics in tendinous tissue, is a form of degeneration found in tendons including those of the rotator cuff. The molecular mechanism of its development is currently unknown. An examination of the features of the torn rotator cuff and the cartilage literature led to the identification of several potential drivers of chondroplasia including cell shape change/actin cytoskeleton and hypoxia. Lovastatin caused actin cytoskeleton disruption and promoted cartilage matrix deposition in the ATDC5 model. It was the most effective member of a panel of cytoskeletal inhibitors, increasing expression of the chondrocytic markers Sox5 and Sox9 and decreasing expression of COL1A1 and COL3A1 in primary human tenocytes. Its effects were dose dependent, reversible by mevalonate addition and long term treatment induced de novo expression of collagen II. Short term hypoxia upregulated VEGF-A and chondrocytic marker gene DEC1 expression but not other chondrocyte markers. Combination treatment with hypoxia did not enhance the effects of lovastatin. These data suggest that modulation of pathways that regulate the actin cytoskeleton and cell shape may alter tenocyte phenotype.
26

Läkemedelseffekter på α-synuklein aggregering - betydelse för Parkinsons sjukdom

Nuhovic, Emina January 2019 (has links)
Parkinsons sjukdom (PD) är ett tillstånd som ger en försvårad och försämrad livskvalité. I dagsläget finns det endast symtomatiska läkemedel men ingen bot med vilken sjukdomen upphör eller som bromsar förloppet. Pågående forskningsarbete utgår bland annat från att ta fram nya läkemedel men även också undersöka om redan befintliga läkemedel går att använda som behandling av PD. Många av de redan befintliga läkemedlen som testas är de som har förmågan att påverka proteinet α-synuklein (α-syn) och dess aggregering, som visats vara en central orsak till uppkomsten av PD. I föreliggande litteraturstudie undersöktes på vilket sätt en del läkemedel vars indikation är PD och även andra sjukdomstillstånd såsom astma, påverkar (ex. påskyndar eller inhiberar) in-vitro aggregering av α-syn. Därutöver genomfördes en detaljerad analys av de utvalda läkemedlen och deras effekt på α-syn aggregering utifrån deras kemiska egenskaper med avseende på löslighet (hydrofila, lipofila, amfifila) och inbindning till α-syn. Här kunde det visas att aggregering av α-syn inhiberades av alla utvalda läkemedel förutom dexametason, som istället påskyndade aggregeringskinetiken för proteinet. Dessutom uppvisade fasudil, ceftriaxon, dopamin, entakapon och tolkapon inbindning till delar av (hydrofila, hydrofoba eller amfifila) vilka delade samma fysikalkemiska egenskaper som α-syn. Därtill uppvisade utvalda läkemedel med till viss del plana strukturer (ex. aromatiska ringar) direkt inbindning till α-syn, vilka också rapporterats ha en något högre grad av transport över blod-hjärnbarriären, dock måste dessa fynd mer noggrant undersökas. Sammanfattningsvis visade alla utvalda läkemedel förutom dexametason anti-aggregeringsegenskaper (hämmande) mot α-syn genom att antingen indirekt eller direkt binda till proteinet och därmed hindra proteinet från att börja binda till sig själv. Mer studier måste genomföras för att studera effekten av läkemedelsexponering på α-syn för att identifiera viktiga segment av proteinet som kan utgöra läkemedelsmål för inhibering av α-syn aggregering. / Parkinson's disease (PD) is a condition that leads to an aggravated and worsened quality of life. At present, there are only symptomatic drugs for PD but no cure that eradicate the disease nor halter the disease progression have been found. Current research is being carried out to develop new drugs, but efforts also investigate whether existing drugs can be used as treatment for PD. Many of the already existing drugs being tested are those that have the ability to interact with a protein called α-synuclein (α-syn), that has been implicated to be a major player for onset of PD. In the present literature study, it was investigated in what way some drugs, whose indication is PD but also other diseases such as asthma, affect (i.e. propagate or inhibit) the in-vitro aggregation kinetics of αsyn. Additionally, a detailed analysis of the investigated drugs and their effect on the aggregation pathway was made to characterize common chemical features of the selected drugs based upon choice of solvents and binding to α-syn. Here, it could be shown that aggregation of α-syn is inhibited upon exposure to all selected drugs except dexametason which instead propagated aggregation of α-syn. In addition, fasudil, ceftriaxone, dopamine, entacapone and tolcapone was found to bind to parts (hydrophilic, hydrophobic or amphiphilic) of α-syn similar to their solubility features. Moreover, the selected drugs that were found to bind to α-syn seemed to exhibit planar in structure (i.e. aromatic rings) and also be associated to pass the blood-brain barrier to a greater extent, however these findings need to be more thoroughly investigated. In summary, all drugs but dexametason were shown to inhibit aggregation of α-syn invitro by either indirectly or directly affecting the aggregation of the protein. Further investigations need to be carried out to study the effect of drug exposure on α-syn aggregation in order to propose key segments of α-syn that can act as drug targets for inhibition of protein aggregation.
27

L’haploinsuffisance de Syngap1 dans les neurones GABAergiques induit une hyperactivation de mTOR et des déficits cognitifs.

Badra, Théo 04 1900 (has links)
No description available.
28

Estudo da ação da lovastatina no desenvolvimento do modelo experimental de epilepsia induzido pela pilocarpina em ratos / Study of lovastatin on development of experimental model of epilepsy induced by pilocarpine in rats

Gouveia, Telma Luciana Furtado [UNIFESP] 29 June 2011 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:50:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-06-29 / Introducao: A inflamacao tem sido relacionada a varias doencas neurodegenerativas e dados clinicos e experimentais sugerem uma funcao crucial nos processos inflamatorios no desenvolvimento da epilepsia, em particular, nos mecanismos geradores de crises (ictogenese) e na transformacao de uma rede neuronal normal a uma rede geradora de crises. A lovastatina, substancia usada na reducao da sintese do colesterol, tambem esta relacionada com a resposta inflamatoria, podendo modular a producao de citocinas e diminuir e o estresse oxidativo. Objetivos: O presente estudo teve como objetivo analisar a acao da lovastatina no desenvolvimento das diferentes fases do modelo de epilepsia, induzido por pilocarpina em ratos. Metodos: Ratos Wistar machos foram analisados nos 3 periodos do modelo da pilocarpina (350mg/kg) fases: aguda (24h), silenciosa (15 dias) e cronica (30 dias apos a 1.a crise espontanea) e para cada periodo do modelo usamos 4 grupos de animais: salina, lovastatina (Lova), pilocarpina (Pilo) e pilocarpina+lovastatina (Pilo+Lova). O tratamento com lovastatina (20 mg/kg) se iniciou 2 h apos o inicio do estado de mal epileptico e foi administrada por 15 dias, duas vezes ao dia nos animais do grupo silencioso e cronico. O cerebro foi processado para realizacao de PCR em tempo real e imuno-histoquimica de IL-1ƒÀ, IL-6, TNF-ƒ¿, IL-10, receptor B1 e B2 de cininas e quantificacao de aminoacidos no hipocampo. Alem disso, o tecido hipocampal foi processado para as tecnicas de Nissl e Neo-Timm modificado. Alem disso, foi medida a temperatura corporea na fase aguda, duracao do periodo silencioso e frequencia de crises na fase cronica. Resultados: O tratamento com a lovastatina no grupo Pilo+Lova mostrou diminuicao da expressao de RNAm e das proteinas IL-1ƒÀ e TNF-ƒ¿ nas 3 fases do modelo Notamos tambem reducao nos niveis do receptor B1 e B2 de cininas na fase aguda e de IL-6 nas fases aguda e silenciosa do modelo. Houve um aumento da expressão de IL-10 na fase crônica e não houve alteração nos níveis dos aminoácidos no hipocampo dos animais desse grupo, quando comparado ao grupo Pilo. Foi observada uma normalização da temperatura corpórea dos ratos submetidos ao SE e tratados com lovastatina. Não houve diferença significativa entre o grupo Pilo e Pilo+Lova na duração da fase silenciosa e na freqüência de crises. Foi observada uma preservação de neurônios em CA1 e também uma diminuição no brotamento de fibras musgosas no grupo Pilo+Lova, quando comparado ao grupo Pilo, na fase crônica do modelo. Conclusão: O presente estudo demonstrou que o tratamento com a lovastatina diminuiu diversos parâmetros importantes relacionados com o dano neuronal induzido pelo SE, no hipocampo de ratos nas diferentes fases do modelo experimental de epilepsia induzido pela pilocarpina. / Introduction: Inflammation has been associated with several neurodegenerative diseases and experimental and clinical data suggest a crucial role in inflammatory processes in the development of epilepsy, particularly in seizure-generating mechanisms (ictogenesis) and transformation of a normal neuronal network into a network generating seizures. Lovastatin, a drug used in the reduction of cholesterol synthesis, is also related to the inflammatory response and can modulate cytokine production reducing the oxidative stress. Objectives: This study aimed to analyze the action of lovastatin in different stages of development model of epilepsy induced by pilocarpine in rats. Methods: Male Wistar rats were analyzed in three periods of the pilocarpine-induced epilepsy (350mg/kg) into phases: acute (24h), silent (15 days) and chronic (30 days after the 1st spontaneous seizure) and for each period of this model we used 4 groups of animals: saline-treated, lovastatin (Lova), pilocarpine (Pilo) and pilocarpine + lovastatin (Pilo+ Lova). Treatment with lovastatin (20 mg / kg) begun 2 h after the onset of status epilepticus (SE) and was administered for 15 days, twice a day the animals in the silent and chronic phases. The brain was processed for performing real-time PCR and immunohistochemistry of IL-1ƒÀ, IL-6, TNF-ƒ¿, IL-10 and kinin B1 and B2 receptors and quantification of amino acids in the hippocampus. Besides, the hippocampal tissue was processed for Nissl techniques and Neo-Timm. In addition, body temperature was measured in the acute phase and the duration of the silent period and seizure frequency in chronic phase was analyzed. Results: Treatment with lovastatin in Pilo + Lova group showed decreased expression of mRNA and proteins IL-1ƒÀ and TNF-ƒ¿ in the three phases of this model, We also noted reduction of kinin B1 and B2 receptor in the acute and IL-6 into acute and silent periods. There was an increased expression of IL-10 in the chronic phase of this model. There was no change in amino acids levels in the hippocampus of rats from Pilo+Lova group when compared to Pilo group. We observed a normalization of body temperature of rats subjected to SE and treated with lovastatin. There was no significant difference between the group Pilo and Pilo + Lova on the duration of the silent phase and in seizure frequency. We observed a preservation of neurons in CA1 and also a reduction of mossy fiber sprouting in Pilo+ Lova group as compared to the Pilo group in the chronic phase of the model. Conclusion: This study demonstrated that treatment with lovastatin decreased number of important parameters related to the neuronal damage induced by SE in the hippocampus of rats at different stages of the experimental model of epilepsy induced by pilocarpine. / TEDE / BV UNIFESP: Teses e dissertações
29

Lovastatin sensitizes the trail-induced apoptosis in human glioblastoma: how does it work?. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Liu, Pi-chu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 155-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
30

Microarray and biochemical analysis of lovastatin-induced apoptosis in human glioblastoma cells: synergism with TRAIL.

January 2006 (has links)
Chan Yiu Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 123-149). / Abstracts in English and Chinese. / Abstracts --- p.I / Acknowledgements --- p.VIII / List of Figures --- p.IX / Lists of Abbreviations --- p.X / Contents --- p.XII / Chapter Chapter One: --- Introduction and Literature Review --- p.1 / Chapter 1.1 --- Cancer in General --- p.1 / Chapter 1.2 --- Glioma --- p.3 / Chapter 1.2.1 --- Types of Glioma --- p.6 / Chapter 1.2.1.1 --- Astrocytomas --- p.6 / Chapter 1.2.1.2 --- Oligodendrogliomas --- p.8 / Chapter 1.2.1.3 --- Ependymomas --- p.9 / Chapter 1.2.2 --- Glioblastoma Multiforme (GBM) --- p.10 / Chapter 1.2.3 --- Molecular Biology of GBM --- p.11 / Chapter 1.2.4 --- Current Treatment for GBM --- p.15 / Chapter 1.3 --- HMG-Co A reductase inhibitors --- p.17 / Chapter 1.3.1 --- Pharmacology of HMG-Co A reductase inhibitor --- p.18 / Chapter 1.3.2 --- Epidemiological link between HMG-Co A Reductase Inhibitors and Cancer --- p.20 / Chapter 1.3.3 --- Current HMG-Co A reductase inhibitors research in cancer --- p.21 / Chapter 1.3.3.1 --- Inhibition of tumor cell growth --- p.21 / Chapter 1.3.3.2 --- Inhibition of Angiogenesis --- p.22 / Chapter 1.3.3.3 --- Anti-invasive effects of HMG-Co A reductase inhibitors.… --- p.23 / Chapter 1.3.3.4 --- Apoptosis induction by HMG-Co A reductase inhibitors --- p.24 / Chapter 1.3.4 --- In vivo efficacy and synergistic effects --- p.25 / Chapter 1.4 --- Tumor Necrosis Factor (TNF) related apoptosis-inducing Ligand (TRAIL) --- p.28 / Chapter 1.4.1 --- Molecular mechanisms of TRAIL-induced apoptosis --- p.29 / Chapter 1.4.2 --- Role for TRAIL in cancer therapy --- p.30 / Chapter 1.5 --- Objectives --- p.34 / Chapter Chapter 2 --- Methods and Materials --- p.35 / Chapter 2.1 --- Cell culture --- p.35 / Chapter 2.2 --- Cell proliferation detection (MTT) methods --- p.36 / Chapter 2.3 --- "Caspase 3,9 activities induced by lovastatin" --- p.37 / Chapter 2.4 --- Detection of apoptosis by Annexin V and PI staining --- p.39 / Chapter 2.5 --- Cell cycle analysis protocols --- p.41 / Chapter 2.6 --- DNA fragmentation ELISA detection kit protocols --- p.42 / Chapter 2.7 --- Reverse Transcription (RT) Polymerase Chain Reaction (PCR) --- p.44 / Chapter 2.8 --- Polymerase Chain Reaction (PCR) --- p.46 / Chapter 2.9 --- Bio-molecules extraction/purification protocols --- p.48 / Chapter 2.10 --- "Microarray analysis on lovastatin treated glioblastoma cells A172, M059J and M059K" --- p.51 / Chapter 2.10.1 --- Cells treatment and RNA extraction --- p.51 / Chapter 2.10.2 --- Synthesis of first strand cDNA --- p.53 / Chapter 2.10.3 --- Synthesis of second strand cDNA --- p.54 / Chapter 2.10.4 --- Purification of double stranded cDNA --- p.54 / Chapter 2.10.5 --- Synthesis of cRNA by in vitro transcription (IVT) --- p.55 / Chapter 2.10.6 --- Recovery of biotin-labelled cDNA --- p.56 / Chapter 2.10.7 --- Fragmentation of cRNA --- p.56 / Chapter 2.10.8 --- Preparation of hybridization reaction mixtures --- p.57 / Chapter 2.10.9 --- Loading of reaction mixtures into bioarray chambers --- p.58 / Chapter 2.10.10 --- Hybridization --- p.58 / Chapter 2.10.11 --- Post-hybridization wash --- p.59 / Chapter 2.10.12 --- 2.11.12Detection with streptavidin-dye conjugate --- p.59 / Chapter 2.10.13 --- Bioarray scanning and analysis --- p.61 / Chapter Chapter 3: --- Results --- p.62 / Chapter 3.1 --- Morphological effects of Lovastatin on human glioblastoma cells --- p.62 / Chapter 3.2 --- Anti-proliferation effects on glioblastoma cell lines --- p.64 / Chapter 3.3 --- Lovastatin-induced caspase3 and 9 activation in human glioblastoma cell lines --- p.69 / Chapter 3.4 --- Cell cycle determination by PI staining --- p.77 / Chapter 3.5 --- Quantification of apoptotic cell death by annexin V and propidium iodide staining --- p.79 / Chapter 3.6 --- Microarray analysis of lovastatin-modulated gene expression profiles --- p.82 / Chapter 3.7 --- Synergistic effects induced by lovastatin and Tumor Necrosis Factor related apoptosis-inducing Ligand (TRAIL) --- p.87 / Chapter 3.7.1 --- M059J and M059K glioblastoma cells was resistant to TRAIL attack --- p.87 / Chapter 3.7.2 --- Synergistic cell death was induced by lovastatin and TRAIL --- p.87 / Chapter 3.7.3 --- A combination of TRAIL and lovastatin induces synergistic apoptosis in glioblastoma cells --- p.93 / Chapter 3.7.4 --- DNA fragmentation on glioblastoma cells --- p.98 / Chapter 3.7.5 --- Four TRAIL receptors mRNA expression profiles on glioblastoma cells --- p.102 / Chapter Chapter 4 --- Discussion --- p.105 / Chapter 4.1 --- Lovastatin exhibited anti-proliferation effects in human glioblastoma cells --- p.107 / Chapter 4.2 --- Lovastatin activated caspase 3 and caspase 9 in human glioblastoma cells --- p.108 / Chapter 4.3 --- Gene expression profile modulated by Lovastatin in human glioblastoma cells --- p.110 / Chapter 4.4 --- Lovastatin-sensitized TRAIL-induced apoptosis in human glioblastoma cells --- p.117 / Chapter Chapter Five: --- Conclusion and Future perspective --- p.121 / References --- p.122 / Appendix --- p.150

Page generated in 0.3274 seconds