11 |
Guarded Evaluation: An Algorithm for Dynamic Power Reduction in FPGAsRavishankar, Chirag January 2012 (has links)
Guarded evaluation is a power reduction technique that involves
identifying sub-circuits (within a larger circuit) whose inputs can be
held constant (guarded) at specific times during circuit operation,
thereby reducing switching activity and lowering dynamic power. The
concept is rooted in the property that under certain conditions, some
signals within digital designs are not "observable" at design
outputs, making the circuitry that generates such signals a candidate
for guarding.
Guarded evaluation has been demonstrated successfully
for custom ASICs; in this work, we apply the technique to FPGAs. In
ASICs, guarded evaluation entails adding additional hardware to the
design, increasing silicon area and cost. Here, we apply the technique
in a way that imposes minimal area overhead by leveraging existing
unused circuitry within the FPGA. The LUT functionality is modified
to incorporate the guards and reduce toggle rates.
The primary challenge in guarded evaluation is in determining the specific conditions under which a sub-circuit's
inputs can be held constant without impacting the larger
circuit's functional correctness. We propose a simple solution to
this problem based on discovering gating inputs using "non-inverting paths"
and trimming inputs using "partial non-inverting paths" in the
circuit's AND-Inverter graph representation.
Experimental results show that guarded evaluation can reduce switching activity by
as much as 32% for FPGAs with 6-LUT architectures and 25% for 4-LUT architectures, on
average, and can reduce power consumption in the FPGA interconnect by
29% for 6-LUTs and 27% for 4-LUTs. A clustered architecture with four LUTs to a cluster
and ten LUTs to a cluster produced the best power reduction results.
We implement guarded evaluation at various stages of the FPGA CAD flow and analyze the reductions. We implement
the algorithm as post technology mapping, post packing and post placement optimizations. Guarded Evaluation
as a post technology mapping algorithm inserted the most number of guards and hence achieved the highest activity
and interconnect reduction. However, guarding signals come with a cost of increased fanout and stress on routing
resources. Packing and placement provides the algorithm with additional information of the circuit which is leveraged
to insert high quality guards with minimal impact on routing. Experimental results show that post-packing
and post-placement methods have comparable reductions to post-mapping with considerably lesser impact on the critical
path delay and routability of the circuit.
|
12 |
LOW-POWER TECHNIQUES FOR SUCCESSIVE APPROXIMATION REGISTER (SAR) ANALOG-TO-DIGITAL CONVERTERSSekar, Ramgopal 01 August 2010 (has links)
In this work, we investigate circuit techniques to reduce the power consumption of Successive Approximation Register Analog-to-Digital Converter (SAR-ADC). We developed four low-power SAR-ADC design techniques, which are: 1) Low-power SAR-ADC design with split voltage reference, 2) Charge recycling techniques for low-power SAR-ADC design, 3) Low-power SAR-ADC design using two-capacitor arrays, 4) Power reduction techniques by dynamically minimizing SAR-ADC conversion cycles. Matlab simulations are performed to investigate the power saving by the proposed techniques. Simulation results show that significant power reduction can be achieved by using the developed techniques. In addition, design issues such as area overhead, design complexity associated with the proposed low-power techniques are also discussed in the thesis.
|
13 |
DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND EMERGING RESISTIVE DEVICESMozaffari Mojaveri, Seyed Nima 01 May 2018 (has links)
The memristor is an emerging nano-device. Low power operation, high density, scalability, non-volatility, and compatibility with CMOS Technology have made it a promising technology for memory, Boolean implementation, computing, and logic systems. This dissertation focuses on testing and design of such applications. In particular, we investigate on testing of memristor-based memories, design of memristive implementation of Boolean functions, and reliability and design of neuromorphic computing such as neural network. In addition, we show how to modify threshold logic gates to implement more functions. Although memristor is a promising emerging technology but is prone to defects due to uncertainties in nanoscale fabrication. Fast March tests are proposed in Chapter 2 that benefit from fast write operations. The test application time is reduced significantly while simultaneously reducing the average test energy per cell. Experimental evaluation in 45 nm technology show a speed-up of approximately 70% with a decrease in energy by approximately 40%. DfT schemes are proposed to implement the new test methods. In Chapter 3, an Integer Linear Programming based framework to identify current-mode threshold logic functions is presented. It is shown that threshold logic functions can be implemented in CMOS-based current mode logic with reduced transistor count when the input weights are not restricted to be integers. Experimental results show that many more functions can be implemented with predetermined hardware overhead, and the hardware requirement of a large percentage of existing threshold functions is reduced when comparing to the traditional CMOS-based threshold logic implementation. In Chapter 4, a new method to implement threshold logic functions using memristors is presented. This method benefits from the high range of memristor’s resistivity which is used to define different weight values, and reduces significantly the transistor count. The proposed approach implements many more functions as threshold logic gates when comparing to existing implementations. Experimental results in 45 nm technology show that the proposed memristive approach implements threshold logic gates with less area and power consumption. Finally, Chapter 5 focuses on current-based designs for neural networks. CMOS aging impacts the total synaptic current and this impacts the accuracy. Chapter 5 introduces an enhanced memristive crossbar array (MCA) based analog neural network architecture to improve reliability due to the aging effect. A built-in current-based calibration circuit is introduced to restore the total synaptic current. The calibration circuit is a current sensor that receives the ideal reference current for non-aged column and restores the reduced sensed current at each column to the ideal value. Experimental results show that the proposed approach restores the currents with less than 1% precision, and the area overhead is negligible.
|
14 |
Micro-electromechanical Resonator-based Logic and Interface Circuits for Low Power ApplicationsAhmed, Sally 11 1900 (has links)
The notion of mechanical computation has been revived in the past few years, with the advances of nanofabrication techniques. Although electromechanical devices are inherently slow, they offer zero or very low off-state current, which reduces the overall power consumption compared to the fast complementary-metal-oxide-semiconductor (CMOS) counterparts. This energy efficiency feature is the most crucial requirement for most of the stand-alone battery-operated gadgets, biomedical devices, and the internet of things (IoT) applications, which do not require the fast processing speeds offered by the mainstream CMOS technology. In particular, using Micro-Electro-Mechanical (MEM) resonators in mechanical computing has drawn the attention of the research community and the industry in the last decade as this technology offers low power consumption, reduced circuit complexity compared to conventional CMOS designs, run-time re- programmability and high reliability due to the contactless mode of operation compared to other MEM switches such as micro-relays.
In this thesis, we introduce digital circuit design techniques tailored for clamped-clamped beam MEM resonators. The main operation mechanism of these circuit blocks is based on fine-tuning of the resonance frequency of the micro-resonator beam, and the logic
function performed by the devices is mainly determined by factors such as input/output terminal arrangement, signal type, resonator operation regime (linear/non-linear), and the operation frequency. These proposed circuits include the major building blocks of any microprocessor such as logic gates, a full adder which is a key block in any arithmetic and logic operation units (ALU), and I/O interface units, including digital to analog (DAC) and analog to digital (ADC) data converters. All proposed designs were first simulated using a finite element software and then the results were experimentally verified. Important aspects such as energy per operation, speed, and circuit complexity are evaluated and compared to CMOS counterparts. In all applications, we show that by proper scaling of the resonator’s dimensions, MHz operation speeds and energy consumption in the range of femto-joules per logic operation are attainable.
Finally, we discuss some of the challenges in using MEM resonators in digital circuit design at the device level and circuit level and propose solutions to tackle some of them.
|
15 |
A DISTANCE BASED SLEEP SCHEDULE ALGORITHM FOR ENHANCED LIFETIME OF HETEROGENEOUS WIRELESS SENSOR NETWORKSSEKHAR, SANDHYA 13 July 2005 (has links)
No description available.
|
16 |
Runtime Leakage Control in Deep Sub-micron CMOS TechnologiesXu, Hao January 2010 (has links)
No description available.
|
17 |
An Error-Tolerant Dynamic Voltage Scaling Method for Low-Power Pipeline Circuit DesignHan, Qiang 19 April 2012 (has links)
No description available.
|
18 |
Une approche de modélisation au niveau système pour la conception et la vérification de systèmes sur puce à faible consommation / An electronic system level modeling approach for the design and verification of low-power systems-on chipMbarek, Ons 29 May 2013 (has links)
Une solution de gestion de puissance d’un système sur puce peut être définie par une architecture de faible puissance composée de multiples domaines d'alimentation et de leur stratégie de gestion. Si ces deux éléments sont économes en énergie, une solution efficace en énergie peut être obtenue. Cette approche nécessite l’ajout d’éléments structurels de puissance et de leurs comportements. Une stratégie de gestion doit respecter les dépendances structurelles et fonctionnelles dues au placement physique des domaines d'alimentation. Cette relation forte entre l'architecture et sa stratégie de gestion doit être analysée tôt dans le flot de conception pour trouver la solution de gestion de puissance la plus efficace. De récentes normes de conception basse consommation définissent des sémantiques pour la spécification, simulation et vérification d’architecture de faible puissance au niveau transfert de registres (RTL). Mais elles manquent une sémantique d’interface de gestion des domaines d'alimentation réutilisable ce qui alourdit l’exploration. Leurs sémantiques RTL ne sont pas aussi utilisables au niveau transactionnel pour une exploration plus rapide et facile. Pour combler ces lacunes, cette thèse étend ces normes et fournit une étude complète des possibilités d'optimisation de puissance basées sur la composition et la gestion des domaines d'alimentation pour des modèles fonctionnels transactionnels utilisant un environnement commun USLPAF. USLPAF comprend une méthodologie alliant conception et vérification des modèles transactionnels de faible consommation, ainsi qu’une bibliothèque de techniques de modélisation et fonctions prédéfinies pour appliquer cette méthodologie. / A SoC power management solution can be defined by a low-power architecture composed of multiple power domains and a power management strategy for power domains states control. If these two elements are energy-efficient, an energy-efficient solution can be obtained. This approach requires inferring power structural elements and their related behavior in the chip internal logic. A strategy adjusting the power domains states must respect structural and functional dependencies due to the physical power domains composition. This strong relationship between power architecture and its management strategy must be explored at early design stages to find the most energy-efficient solution. Low-power design standards have recently enabled low-power architecture exploration starting from the Register Transfer Level (RTL) by defining semantics to specify power architecture, simulate and check its behavior along with the initial functional one. But, these standards miss semantics for reusable power domain control interface making power management strategies exploration tedious. The RTL-based semantics defined by these standards constrain also their use at Transaction-Level of Modeling (TLM) for fast and easy exploration. This dissertation proposes extensions to low-power standards to fill these gaps. It provides a complete study of power optimization opportunities based on composition and management of power domains in Transaction-Level (TL) functional models within a common USLPAF framework. USLPAF includes a methodology that combines design and verification of TL low-power models. To apply this methodology, USLPAF incorporates a library of modeling techniques and built-in features.
|
19 |
Low power SAR analog-to-digital converter for internet-of-things RF receivers / Conversor analógico-digital SAR de baixo consumo para receptores RF de internet-das-coisasDornelas, Helga Uchoa January 2018 (has links)
The "Internet of Things" (IoT) has been a topic of intensive research in industry, technological centers and academic community, being data communication one aspect of high relevance in this area. The exponential increase of devices with wireless capabilities as well as the number of users, alongside with the decreasing costs for implementation of broadband communications, created a suitable environment for IoT applications. An IoT device is typically composed by a wireless transceiver, a battery and/or energy harvesting unit, a power management unit, sensors and conditioning unit, a microprocessor and data storage unit. Energy supply is a limiting factor in many applications and the transceiver usually demands a significant amount of power. In this scenario the emerging wireless communication standard IEEE 802.11ah, in which this work focuses, was proposed as an option for low power sub-GHz radio communication. A typical architecture of modern radio receivers contains the analog radio-frequency (RF) front-end, which amplifies, demodulates and filters the input signal, and also analog-to-digital converters (ADC), that translate the analog signals to the digital domain. Additionally, the Successive-Approximation (SAR) ADC architecture has become popular recently due to its power efficiency, simplicity, and compatibility with scaled-down integrated CMOS technology. In this work, the RF receiver architecture and its specifications aiming low power consumption and IEEE 802.11ah standard complying are outlined, being the basis to the proposition of an 8-bit resolution and 10 MHz sampling rate ADC. A power efficient switching scheme for the charge redistribution SAR ADC architecture is explored in detail, along with the circuit-level design of the digital-to-analog converter (DAC). The transistor-level design of the two remaining ADC main blocks, sampling switch and comparator, are also explored. Electrical simulation of the physical layout, including parasitics, at a 130nm CMOS process resulted in a SINAD of 47:3 dB and 45:5 dB and at the receiver IF 3 MHz and at the Nyquist rate, respectively, consuming 21 W with a power supply of 1 V . The SAR ADC resulting Figure-of-Merit (FoM) corresponded to 11:1 fJ/conv-step at IF, and 13:7 fJ/conv-step at the Nyquist rate.
|
20 |
A Nonlinear Programming Approach for Dynamic Voltage ScalingArdi, Shanai January 2005 (has links)
<p>Embedded computing systems in portable devices need to be energy efficient, yet they have to deliver adequate performance to the often computationally expensive applications. Dynamic voltage scaling is a technique that offers a speed versus power trade-off, allowing the application to achieve considerable energy savings and, at the same time, to meet the imposed time constraints.</p><p>In this thesis, we explore the possibility of using optimal voltage scaling algorithms based on nonlinear programming at the system level, for a complex multiprocessor scheduling problem. We present an optimization approach to the modeled nonlinear programming formulation of the continuous voltage selection problem excluding the consideration of transition overheads. Our approach achieves the same optimal results as the previous work using the same model, but due to its speed, can be efficiently used for design space exploration. We validate our results using numerous automatically generated benchmarks.</p>
|
Page generated in 0.0824 seconds