• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DYNAMIC ANALYSES OF LOW STRENGTH MASONRY HOUSES BASED ON SITE SPECIFIC EARTHQUAKE GROUND MOTIONS / 地震動の地域特性を考慮した低強度組積造建物の動的解析 / ジシンドウ ノ チイキ トクセイ オ コウリョシタ テイキョウド ソセキゾウ タテモノ ノ ドウテキ カイセキ

Parajuli, Hari Ram 23 March 2009 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14556号 / 工博第3024号 / 新制||工||1450(附属図書館) / 26908 / UT51-2009-D268 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 大津 宏康, 准教授 清野 純史, 准教授 五十嵐 晃 / 学位規則第4条第1項該当
2

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Black, Rebecca Eileen 01 December 2018 (has links)
Low-strength cellular concrete is a type of controlled low-strength material (CLSM) which is increasingly being used for various modern construction applications. Benefits of the material include its ease of placement due to the ability of cellular concrete to self-level and self-compact. It is also extremely lightweight compared to traditional concrete, enabling the concrete to be used in fill applications as a compacted soil would customarily be used. Testing of this material is not extensive, especially in the form of large-scale tests. Additionally, effects of skew on passive force resistance help to understand performance of a material when it is used in an application where skew is present. Two passive force-deflection tests were conducted in the structures lab of Brigham Young University. A 4-ft x 4-ft x 12-ft framed box was built with a steel reaction frame on one end a 120-kip capacity actuator on the other. For the first test a non-skewed concrete block, referred to as the backwall, was placed in the test box in front of the actuator. For the second test a backwall with a 30° skew angle was used. To evaluate the large-scale test a grid was painted on the concrete surface and each point was surveyed before and after testing. The large-scale sample was compressed a distance of approximately three inches, providing a clear surface failure in the sample. The actuator provided data on the load applied, enabling the creation of the passive force-deflection curves. Several concrete cylinders were cast with the same material at the time of pouring for each test and tested periodically to observed strength increase.The cellular concrete for the 0° skew test had an average wet density of 29 pounds per cubic foot and a 28-day compressive strength of 120 pounds per square inch. The cellular concrete for the 30° skew test had an average wet density of 31 pounds per cubic foot and a 28-day compressive strength of 132 pounds per square inch. It was observed from the passive force deflection curves of the two tests that skew decreased the peak passive resistance by 29%, from 52.1 kips to 37 kips. Various methods were used to predict the peak passive resistance and compared with observed behavior to verify the validity of each method.
3

The Effect of Flowable Fill on the Lateral Resistance of Driven-Pile Foundations

Miner, Dustin David 02 December 2009 (has links) (PDF)
Flowable fill was used to strengthen the soft soil surrounding piles and behind the pile cap. The flowable fill placed beneath the pile cap surrounding the piles showed no appreciable increase in lateral resistance, this was partially due to the fact that the flowable fill placed had an unconfined compressive strength of 30 psi. Flowable fill was also used to replace a 12 ft wide, 6 ft thick, and 6 ft deep zone consisting of an average 475 psf clay that was adjacent to a 9-pile group in 3x3 pile configuration capped with a 9 ft x 9 ft x 2.5 ft, 5000 psi concrete cap. The flowable fill placed behind the pile cap had an unconfined compressive strength of about 137 psi. Lateral load testing of the pile foundation was then undertaken. The results of this testing were compared with similar testing performed on the same foundation with native soil conditions. The lateral resistance of the native soil was 282 kips at 1.5 inches of displacement, and the total lateral resistance of the pile foundation with flowable fill placed behind the pile cap was increased by about 53% or 150 kips. Of the 150 kips, 90% to 100% can be attributed to the increased passive force on the face of the flowable fill zone and shearing of the base and sides denoting that the flowable fill zone behaved as a rigid block. The long term strength of the flowable fill when water is allowed to flow over it is still in question. Samples of the 137 psi flowable fill were cured in a fog room for 700 days and showed a 56% decrease in their unconfined compressive strength. Any increase in lateral strength from the flowable fill would be compromised over a period of time less than 700 days. Site specific characteristics concerning water flow would need to be evaluated to determine if flowable fill would be an acceptable material to increase the lateral resistance of a pile group.
4

Hybrid Steel Frames

Atlayan, Ozgur 22 April 2013 (has links)
The buildings that are designed according to the building codes generally perform well at severe performance objectives (like life safety) under high earthquake hazard levels. However, the building performance at low performance objectives (like immediate occupancy) under low earthquake hazards is uncertain. The motivation of this research is to modify the design and detailing rules to make the traditional systems perform better at multi-level hazards. This research introduces two new structural steel systems: hybrid Buckling Restrained Braced Frames (BRBF) and hybrid steel Moment Frames (MF). The "hybrid" term for the BRBF system comes from the use of different steel material including carbon steel (A36), high-performance steel (HPS) and low yield point (LYP) steel. The hybridity of the moment frames is related to the sequence in the plastification of the system which is provided by using weaker and stronger girder sections. Alternative moment frame connections incorporating the use of LYP steel plates are also investigated. The hybrid BRBF approach was evaluated on seventeen regular (standard) frames with different story heights, seismic design categories and building plans. By varying the steel areas and materials in the BRB cores, three hybrid BRBFs were developed for each regular (standard) frame and their behavior was compared against each other through pushover and incremental dynamic analyses. The benefits of the hybridity were presented using different damage measures such as story accelerations, interstory drifts, and residual displacements. Collapse performance evaluation was also provided. The performance of hybrid moment frames was investigated on a design space including forty-two moment frame archetypes. Two different hybrid combinations were implemented in the designs with different column sections and different strong column-weak beam (SC/WB) ratios. The efficiency of the hybrid moment frame in which only the girder sizes were changed to control the plastification was compared with regular moment frame designs with higher SC/WB ratios. As side studies, the effect of shallow and deep column sections and SC/WB ratios on the moment frame behavior were also investigated.   In order to provide adequate ductility in the reduced capacity bays with special detailing, alternative hybrid moment frame connections adapting the use of low strength steel were also studied. / PhD
5

Laboratory Characterization of controlled low-strength material and its application to construction of flexible pipe drainage system

Shah, Jigar January 2000 (has links)
No description available.
6

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30<&degree> skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0<&degree> skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30<&degree> skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
7

Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious Materials

Kochyil Sasidharan Nair, Syam Kumar 2010 December 1900 (has links)
Civil engineers are at times required to stabilize sulfate bearing clay soils with calcium based stabilizers. Deleterious heaving in these stabilized soils may result over time. This dissertation addresses critical questions regarding the consequences of treating sulfate laden soils with calcium-based stabilizers. The use of a differential scanning calorimeter was introduced in this research as a tool to quantify the amount of ettringite formed in stabilized soils. The first part of this dissertation provides a case history analysis of the expansion history compared to the ettringite growth history of three controlled low strength mixtures containing fly ash with relatively high sulfate contents. Ettringite growth and measurable volume changes were monitored simultaneously for mixtures subjected to different environmental conditions. The observations verified the role of water in causing expansion when ettringite mineral is present. Sorption of water by the ettringite molecule was found to be a part of the reason for expansion. The second part of this dissertation evaluates the existence of threshold sulfate levels in soils as well as the role of soil mineralogy in defining the sensitivity of soils to sulfate-induced damage. A differential scanning calorimeter and thermodynamics based phase diagram approach are used to evaluate the role of soil minerals. The observations substantiated the difference in sensitivity of soils to ettringite formation, and also verified the existence of a threshold level of soluble sulfates in soils that can trigger substantial ettringite growth. The third part of this dissertation identifies alternative, probable mechanisms of swelling when sulfate laden soils are stabilized with lime. The swelling distress observed in stabilized soils is found to be due to one or a combination of three separate mechanisms: (1) volumetric expansion during ettringite formation, (2) water movement triggered by a high osmotic suction caused by sulfate salts, and (3) the ability of the ettringite mineral to absorb water and contribute to the swelling process.
8

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30° skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0° skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30° skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
9

Effects of Strength Level on Youth Athlete Performance Indicators

Wagner, Jayson Kyle 06 June 2022 (has links)
No description available.
10

LCC MSE Walls

Smith, Joel 08 December 2023 (has links) (PDF)
Lightweight cellular concrete (LCC) is mainly a mixture of water, cement, and foam bubbles. LCC generally has a cast density between 20-60 pcf and an air content between 49-84%. LCC is often used as a fill material because it has a low unit weight which reduces settlement. LCC is increasingly being considered as a backfill behind Mechanically Stabilized Earth (MSE) walls and embankments. Although engineers are using LCC in MSE walls or free face walls (MSE wall without the concrete panels or reinforcements), there is presently a lack of information regarding the performance and behavior of LCC to guide them. This research attempts to answer questions on the design of MSE walls backfilled with LCC and free face LCC walls by providing a well-documented case history and evaluating if LCC can be modeled as a c-ϕ material. A steel frame test box (10 ft wide x 12 ft long x 10 ft high) with a MSE wall on one side was constructed for the research. The box was filled with four lifts of LCC with steel ribbed-strip reinforcements extending into the LCC behind the MSE wall panels at the center of each lift. After the LCC was cured, two static load tests were performed by applying a surcharge load to the surface of the LCC. In one test, surcharge pressure was applied adjacent to the MSE wall to produce failure of the wall system. In a second test, the surcharge pressure was placed adjacent to a free face of the LCC to produce failure. String potentiometers (string pots), load cells, pressure plates, and strain gages were used to measure the behavior of the MSE wall and free face wall during testing. These two tests provided a comparison between LCC behavior with a MSE wall relative to a LCC free face. Failure of the free face wall with unreinforced LCC backfill in this test can be predicted using Rankine’s lateral force equation using a c-ϕ model. Failure angle at the base of the free face wall was between 51-63° which corresponds with an average friction angle (ϕ) of 24° and cohesion (c) of 1575 psf with an upper bound ϕ = 34° and a c = 1285 psf. The presence of reinforcements in the LCC backfill behind the MSE wall increased the capacity of the wall to hold a surcharge load. The presence of reinforcements in the LCC behind MSE walls also led to a much more ductile surcharge pressure vs. lateral deflection curve for the MSE wall compared to the free face wall.

Page generated in 0.0598 seconds