• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 20
  • 19
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Utilização de métodos de machine learning para identificação de instrumentos musicais de sopro pelo timbre

Veras, Ricardo da Costa January 2018 (has links)
Orientador: Prof. Dr. Ricardo Suyama / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, Santo André, 2018. / De forma geral a Classificação de Padrões voltada a Processamento de Sinais vem sendo estudada e utilizada para a interpretação de informações diversas, que se manifestam em forma de imagens, áudios, dados geofísicos, impulsos elétricos, entre outros. Neste trabalho são estudadas técnicas de Machine Learning aplicadas ao problema de identificação de instrumentos musicais, buscando obter um sistema automático de reconhecimento de timbres. Essas técnicas foram utilizadas especificamente com cinco instrumentos da categoria de Sopro de Madeira (o Clarinete, o Fagote, a Flauta, o Oboé e o Sax). As técnicas utilizadas foram o kNN (com k = 3) e o SVM (numa configuração não linear), assim como foram estudadas algumas características (features) dos áudios, tais como o MFCC (do inglês Mel-Frequency Cepstral Coefficients), o ZCR (do inglês Zero Crossing Rate), a entropia, entre outros, sendo fonte de dados para os processos de treinamento e de teste. Procurou-se estudar instrumentos nos quais se observa uma aproximação nos timbres, e com isso verificar como é o comportamento de um sistema classificador nessas condições específicas. Observou-se também o comportamento dessas técnicas com áudios desconhecidos do treinamento, assim como com trechos em que há uma mistura de elementos (gerando interferências para cada modelo classificador) que poderiam desviar os resultados, ou com misturas de elementos que fazem parte das classes observadas, e que se somam num mesmo áudio. Os resultados indicam que as características selecionadas possuem informações relevantes a respeito do timbre de cada um dos instrumentos avaliados (como observou-se em relação aos solos), embora a acurácia obtida para alguns dos instrumentos tenha sido abaixo do esperado (como observou-se em relação aos duetos). / In general, Pattern Classification for Signal Processing has been studied and used for the interpretation of several information, which are manifested in many ways, like: images, audios, geophysical data, electrical impulses, among others. In this project we study techniques of Machine Learning applied to the problem of identification of musical instruments, aiming to obtain an automatic system of timbres recognition. These techniques were used specifically with five instruments of Woodwind category (Clarinet, Bassoon, Flute, Oboe and Sax). The techniques used were the kNN (with k = 3) and the SVM (in a non-linear configuration), as well as some audio features, such as MFCC (Mel-Frequency Cepstral Coefficients), ZCR (Zero Crossing Rate), entropy, among others, used as data source for the training and testing processes. We tried to study instruments in which an approximation in the timbres is observed, and to verify in this case how is the behavior of a classifier system in these specific conditions. It was also observed the behavior of these techniques with audios unknown to the training, as well as with sections in which there is a mixture of elements (generating interferences for each classifier model) that could deviate the results, or with mixtures of elements that are part of the observed classes, and added in a same audio. The results indicate that the selected characteristics have relevant information regarding the timbre of each one of evaluated instruments (as observed on the solos results), although the accuracy obtained for some of the instruments was lower than expected (as observed on the duets results).
12

Segmentação, classificação e quantificação de bacilos de tuberculose em imagens de baciloscopia de campo claro através do emprego de uma nova técnica de classificação de pixels utilizando máquinas de vetores de suporte

Xavier, Clahildek Matos 02 July 2012 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-07-15T14:04:04Z No. of bitstreams: 1 Dissertação - Clahildek Matos Xavier.pdf: 23017599 bytes, checksum: f3e0230fd866c0a784966606404bb807 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-15T18:37:45Z (GMT) No. of bitstreams: 1 Dissertação - Clahildek Matos Xavier.pdf: 23017599 bytes, checksum: f3e0230fd866c0a784966606404bb807 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-15T18:47:26Z (GMT) No. of bitstreams: 1 Dissertação - Clahildek Matos Xavier.pdf: 23017599 bytes, checksum: f3e0230fd866c0a784966606404bb807 (MD5) / Made available in DSpace on 2015-07-15T18:47:26Z (GMT). No. of bitstreams: 1 Dissertação - Clahildek Matos Xavier.pdf: 23017599 bytes, checksum: f3e0230fd866c0a784966606404bb807 (MD5) Previous issue date: 2012-07-02 / Não Informada / Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis that primarily affects the lungs and reaches over 8.8 million people worldwide. Although the number of cases of TB disease and deaths has fallen over the past years, this disease still remains a serious health problem in developing countries. Currently, as initial tests for the diagnosis of TB are used methods of smear bright field and fluorescence. The first is used mostly in developing countries, due to low cost, the second is the preferred method in developed countries to be more sensitive. Among the many challenges for the control of this disease is the development of a rapid, efficient and low cost for the diagnosis of tuberculosis. The process of diagnosis of smear-field course is time consuming, manual and error-prone, so that there is a high rate of false negatives. Various techniques for pattern recognition in the image smear bright field microscopy have been designed to recognize and count of the rods. This paper describes a new method for segmentation of tubercle bacilli in sputum bright field. The method proposed in this dissertation uses a classifier consisting of a support vector machine. The differential method is proposed in the variables selected for the input of the classifier. They were selected from four color spaces: RGB, HSI, YCbCr and Lab used to both individual characteristics such as subtractions of characteristics of the same color space and different color spaces. We investigated a total of 30 features. The best features were selected using the selection technique scalar features. With the proposed method was reached a sensitivity of 94%. However, further steps for noise reduction are required to minimize the classification errors. / A tuberculose (TB) é uma doença contagiosa causada pelo Mycobacterium tuberculosis que afeta, principalmente, os pulmões e atinge mais de 8,8 milhões de pessoas em todo o mundo. Embora o número de casos de doenças e mortes por TB tenham caído ao longo dos últimos anos, essa doença ainda continua sendo um grave problema de saúde nos países em desenvolvimento. Atualmente, como exames iniciais para o diagnóstico da TB são usados os métodos de baciloscopia de campo claro e baciloscopia de fluorescência. O primeiro é mais usado em países em desenvolvimento, devido ao baixo custo; o segundo é o método preferencial em países desenvolvidos por ser mais sensível. Entre os vários desafios para o controle dessa doença, está o desenvolvimento de um método rápido, eficiente e de baixo custo para o diagnóstico da TB. O processo de diagnóstico de baciloscopia de campo claro é demorado, manual e propenso a erros, fazendo com que haja uma alta taxa de falsos negativos. Várias técnicas de reconhecimento de padrão em imagens baciloscópicas de microscopia de campo claro têm sido desenvolvidas para o reconhecimento e contagem dos bacilos. Este trabalho descreve um novo método para segmentação de bacilos da tuberculose em baciloscopia de campo claro. O método proposto utiliza um classificador constituído por uma máquina de vetores de suporte. O diferencial do mesmo em relação a outros trabalhos está nas variáveis selecionadas para a entrada do classificador. Essas variáveis foram selecionadas a partir de quatro espaços de cor: RGB, HSI, YCbCr e Lab. Investigou-se tanto características individuais, como subtrações de características de um mesmo espaço de cor e de espaços de cores diferentes, num total de 30 características. As melhores características foram selecionadas utilizando-se a técnica de seleção escalar de características. Alcançou-se uma sensibilidade de 94%. No entanto, novas etapas para a redução de ruído são necessárias para minimizar os erros de classificação.
13

Reconhecimento de dígitos manuscritos: busca de um classificador com máxima taxa de acerto

Gil, Adriano Mendes 13 May 2014 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-07-15T14:33:14Z No. of bitstreams: 1 Dissertação - Adriano Mendes Gil.pdf: 11255112 bytes, checksum: 36763272079e769a8fc63a58ab9d3461 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-20T13:59:00Z (GMT) No. of bitstreams: 1 Dissertação - Adriano Mendes Gil.pdf: 11255112 bytes, checksum: 36763272079e769a8fc63a58ab9d3461 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-20T14:04:10Z (GMT) No. of bitstreams: 1 Dissertação - Adriano Mendes Gil.pdf: 11255112 bytes, checksum: 36763272079e769a8fc63a58ab9d3461 (MD5) / Made available in DSpace on 2015-07-20T14:04:10Z (GMT). No. of bitstreams: 1 Dissertação - Adriano Mendes Gil.pdf: 11255112 bytes, checksum: 36763272079e769a8fc63a58ab9d3461 (MD5) Previous issue date: 2014-05-13 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Optical character recognition system, aka OCR, allows identifying and recognizing printed characters from pictures. A wide range of devices already has such functionality, e.g, scanners and mobile devices. The current everyday tasks has an increasing demand for handwritten character recognition, for example, recognize specified amount on bank checks, identify postal address to automate some aspects of letter delivery. Handwritten digit recognition faces the difficulty of great intraclass variability, due to different writing stiles and different character slant degrees. This work presents three strategies to address handwritten digit recognition by means of three pattern recognition methods and two feature extraction algorithms. The first strategy makes use of Fourier Descriptor and Boundary Transition Technique to extract representative values from digits contours in order to recognize digits is used a neural network Multilayer Perceptron and a set of Support Vector Machines classifiers to validate neural network output. The second strategy represents this work's baseline using the classic convolutional neural networks algorithm from literature, LeNet5. Such algorithm received as input the raw digit images without preprocessing. The third strategy used a unbalanced decision tree in which support vector machines actuated as decision points and as representative feature received the raw digit images. Late experiments showed that first strategy was not effective enough to recognize digits; only about 80% of characters were successfully recognized. By means of Convolutional Neural Network was possible to achieve 0.9% of error rate, not so impressive if compared to literature best results. The third strategy was capable to recognize 100% of test samples from handwritten digits dataset of MNist. Each support vector machine classifier achieved 0% of error rate, due to an enormous amount of support vectors. / Sistemas de reconhecimento ótico de caracteres, também conhecidos como OCR, permitem identificar e reconhecer caracteres impressos por meio de imagens, uma funcionalidade já bem difundida em scanners, dispositivos móveis, entre outros. Existe uma crescente necessidade de reconhecimento de caracteres manuscritos para uso em várias situações, tais como reconhecimento de valores nominais em cheques de bancos, reconhecimento dos dígitos manuscritos de endereço postal para redirecionamento automatizado de cartas nos correios. Reconhecimento de dígitos manuscritos esbarra na dificuldade de lidar com uma grande variação intraclasse, devido a diferentes estilos de escrita, diferentes graus de inclinação dos caracteres. Este trabalho apresenta três estratégias utilizando três diferentes métodos de reconhecimento de padrões e dois métodos de extração de características. A primeira estratégia utilizou Descritores de Fourier e a técnica de transição de borda para extrair valores representativos do contorno dos caracteres e como camada de classificação utilizou uma rede neural MLP em associação com um conjunto de classificadores SVM para validar e corrigir eventuais erros da rede MLP. A segunda estratégia figurou como base comparativa para as demais estratégias por utilizar um algoritmo clássico de redes neurais convolutivas, LeNet5, e como características utilizou as próprias imagens dos dígitos. A terceira estratégia fez uso de um conjunto de classificadores SVM em uma árvore de decisão desbalanceada para a classificação dos dígitos a partir unicamente de suas imagens. Como resultados dos experimentos, a primeira estratégia provou não ser totalmente efetiva por obter resultados em torno de 80% de taxa de acerto. A segunda estratégia obteve 0,9% de taxa de erro que apesar de ter sido alta, ainda é muito menor se comparada com os melhores resultados obtidos na literatura. A terceira estratégia por sua vez logrou sucesso em reconhecer 100% das amostras de teste da base MNist de dígitos manuscritos, devido ao sucesso do treinamento de cada um dos classificadores SVM, que apesar de utilizarem uma enorme quantidade de vetores de suporte, atingiram individualmente 0% de taxa de erro.
14

DETECÇÃO DE REGIÕES SUSPEITAS E CLASSIFICAÇÃO DE MASSAS EM MAMOGRAFIAS DIGITAIS UTILIZANDO DESCRIÇÃO ESPACIAL COM FUNÇÃO VARIOGRAMA / DETECTION OF SUSPICIOUS REGIONS AND CLASSIFICATION OF MASSES DESCRIPTION USING DIGITAL MAMMOGRAPHY IN SPACE VARIOGRAM FUNCTION

Ericeira, Daniel Rodrigues 17 March 2011 (has links)
Made available in DSpace on 2016-08-17T14:53:15Z (GMT). No. of bitstreams: 1 Daniel Rodrigues Ericeira.pdf: 2002346 bytes, checksum: df76ac081a5d0e5816a81b5699935561 (MD5) Previous issue date: 2011-03-17 / Mammography is the exam of the breast, used as breast cancer prevention and also as a diagnostic method. This exam, which consists in an X-Ray of the breast, allows cancer detection. The purpose of this work is to use image processing techniques and computer vision to help specialists in detecting suspect regions and masses in digital mammographies. The first stage of the methodology consists in pre-processing the images to make them more suitable to registration, through noise reduction, image segmentation and re-scale. The next stage presents bilateral left and right breast image pairs registration. In order to correct position and compression differences that occur during the exams, rigid registration (followed by optic flow deformable registration) was applied in each image pair. Corresponding pairs of regions were related and their mutual variations were measured through cross-variogram spatial description. On the next stage, a training model for a Support Vector Machine (SVM) was created using as characteristics the cross-variogram values of each pair of regions of 180 cases. This SVM was tested for 100 new cases. The region pairs that contained lesions were classified as suspect regions , and the other regions as non-suspect regions . From the suspect regions, variogram characteristics were extracted as tissue texture descriptors. The regions that contained masses were classified as mass regions and the other regions as non-mass regions . Stepwise linear discriminant analysis was applied to select the most significant characteristics to train the second SVM. Tests with 30 new cases were performed for the trained SVM final classification in mass or non-mass . The best case presented on the final classification: 96% accuracy, 100% sensitivity and 95,34% specificity. The worst case presented: 70% accuracy, 100% sensitivity and 67,56% specificity. On average, the 30 cases presented: 90% accuracy, 100% sensitivity and 85% specificity. / A mamografia é um exame de mama, utilizado de forma preventiva ao câncer de mama e também como método diagnóstico. Este exame, que consiste em uma radiografia das mamas, permite a detecção do câncer. O objetivo deste trabalho é utilizar técnicas de processamento de imagens e visão computacional para auxiliar especialistas na detecção de regiões suspeitas e detecção de massas mamárias em mamografias digitais. A primeira etapa da metodologia consiste em pré-processar as imagens de forma a torná-las mais apropriadas ao registro, através de redução de ruído, segmentação e re-dimensionamento. A etapa seguinte apresenta o registro bilateral de pares de mamas esquerda e direita. Para corrigir as diferenças de posicionamento e compressão ocorridas no momento do exame, o método de registro rígido foi aplicado (seguido do método de registro deformável com fluxo óptico) para cada par de imagens. Pares de regiões correspondentes foram relacionados e suas variações foram medidas através do descritor espacial variograma cruzado. Na etapa seguinte, foi criado um modelo para treinamento de uma Máquina de Vetores de Suporte (MVS) utilizando como características os valores de variograma cruzado de cada par de janelas de 180 casos. Esta MVS foi testada em 100 novos casos. Os pares que continham lesões foram classificados como regiões suspeitas ; as demais, como regiões não-suspeitas . Destas regiões suspeitas, foram extraídas características de variograma como descritores de textura de tecido. As regiões que continham massas foram classificadas como regiões de massa e as demais como regiões de não-massa . Análise linear discriminante stepwise foi aplicada para selecionar as características mais significativas para treinamento de uma segunda MVS. Foram realizados testes com 30 novos casos para a classificação final pela MVS treinada em massa e nãomassa . O melhor resultado apresentou na classificação final: 96% de acurácia, 100% de sensibilidade e 95,34% de especificidade. O pior caso apresentou: 70% de acurácia, 100% de sensibilidade e 67,56% de especificidade. Em média, os 30 casos apresentaram: 90% de acurácia, 100% de sensibilidade e 85% de especificidade.
15

CLASSIFICAÇÃO DE TECIDOS DA MAMA A PARTIR DE IMAGENS MAMOGRÁFICAS EM MASSA E NÃO MASSA USANDO ÍNDICE DE DIVERSIDADE DE MCINTOSH E MÁQUINA DE VETORES DE SUPORTE / CLASSIFICATION OF TISSUE BREAST FROM MAMMOGRAPHIC IMAGES IN MASS AND NOT MASS USING INDEX OF DIVERSITY OF MCINTOSH AND SUPPORT VECTOR MACHINE

Carvalho, Péterson Moraes de Sousa 20 April 2012 (has links)
Made available in DSpace on 2016-08-17T14:53:21Z (GMT). No. of bitstreams: 1 Peterson.pdf: 1362910 bytes, checksum: 963fec328036941a0790b198cc0d6187 (MD5) Previous issue date: 2012-04-20 / FUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO / Breast cancer is the second most common in the world and which more affects women. In recent years, several Computer Aided Detection/Diagnosis Systems has been developed in order to assist health specialists in the detection and diagnosis of cancer, serving as a second opinion. The aim of this paper is to present a methodology for discrimination and classification of regions extracted from mammograms in mass and non-mass. In this study, Digital Database for Screening Mammography (DDSM) is used. To describe the texture of the region of interest is applied McIntosh Diversity Index, commonly used in ecology. The calculation of this index is proposed in four approaches: through the Histogram, through the Gray Level Co-occurrence Matrix, through the Gray Level Run Length Matrix and through the Gray Level Gap Length Matrix. For the classification of regions in mass and non-mass, is used the supervised classificator Support Vector Machine (SVM). The methodology shows promising results for the classification of masses and non-masses, reaching an accuracy of 93,68%. / O câncer de mama é o segundo tipo de câncer mais frequente no mundo e o que mais acomete as mulheres. Nos últimos anos, vários Sistemas de Detecção e Diagnóstico auxiliados por Computador (Computer Aided Detection/Diagnosis) têm sido desenvolvidos no intuito de auxiliar especialistas da área da saúde na detecção e diagnóstico de câncer, servindo como uma segunda opnião. O objetivo deste trabalho é apresentar uma metodologia de discriminação e classificação de regiões extraídas de mamografias em massa e não massa. Neste estudo, o Digital Database for Screening Mammography (DDSM) é usado. Para descrever a textura da região de interesse é aplicado o Índice de Diversidade de McIntosh, comumente usado em ecologia. O cálculo deste índice é proposto em quatro abordagens: através do Histograma, da Matriz de Co-ocorrência de Níveis de Cinza, da Matriz de Comprimentos de Corrida de Cinza e da Matriz de Comprimentos de Lacuna de Cinza. Para classificação das regiões em massa e não massa, é utilizado o classificador supervisionado Support Vector Machine (SVM). A metodologia apresenta resultados promissores para a classificação de massas e não massas, alcançando uma acurácia de 93,68%.
16

Avaliação do estado nutricional de nitrogênio e estimativa da produtividade de biomassa de trigo por meio de mineração de dados de sensoriamento remoto

Stachak, Alessandro 15 March 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-05-09T13:45:12Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Alessandro Stachak.pdf: 2666037 bytes, checksum: b9d6cfbe55279b9d7942ae1afa0c2115 (MD5) / Made available in DSpace on 2018-05-09T13:45:12Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Alessandro Stachak.pdf: 2666037 bytes, checksum: b9d6cfbe55279b9d7942ae1afa0c2115 (MD5) Previous issue date: 2018-03-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estimar a produtividade de biomassa na agricultura é uma ferramenta chave no manejo da lavoura, gerando informações que podem auxiliar a complexa tomada de decisões no campo. O nitrogênio (N), por ser é um nutriente que participa da estrutura e de funções celulares vitais à planta, apresenta estreita correlação com a produtividade de biomassa, principalmente na cultura do trigo (Triticum aestivum L.). Uma técnica muito utilizada na estimativa de biomassa e estado nutricional de N é o sensoriamento remoto (SR), que consiste na aquisição de informações de um objeto sem existir contato entre o sensor e o alvo. No SR existem três plataformas de obtenção de dados, sendo elas: orbital, por meio de satélites; aéreo, com aviões, helicópteros e aeronaves remotamente pilotadas (RPA); e terrestre, com sensores óticos e espectroradiômetros. Na criação de modelos de estimativa de produtividade de biomassa e de teor foliar de N, as três plataformas do SR são empregadas, já existindo produtos comerciais para tais finalidades. Entretanto, existe carência de informações a respeito da eficiência das tais plataformas em um mesmo estudo de campo. Tradicionalmente, os modelos preditivos com dados de SR na agricultura são gerados por técnicas clássicas de estatística, como a regressão linear. No entanto, técnicas da mineração de dados (MD) podem obter resultados mais relevantes. Dentre as técnicas da MD promissoras, a máquina de vetores de suporte para regressão (SVR), devido a sua grande capacidade de generalização e criação de modelos lineares e não lineares, tem sido empregada em dados de SR. Os objetivos deste trabalho foram:(i) avaliar a correlação entre os dados obtidos a partir das três plataformas do SR na estimativa da produtividade de biomassa seca da parte aérea e da concentração de N nas folhas de trigo, e (ii) comparar os resultados obtidos com a técnica clássica de regressão linear em relação aqueles gerados pela SVR. Para isso, plantas de trigo, cultivar TBIO Sinuelo, foram cultivadas em diferentes ambientes envolvendo manejos distintos de adubação nitrogenada. A avaliação da capacidade dos sensores foi abordada de duas formas: (i) com amostras aleatórias em diferentes estádios de desenvolvimento da cultura do trigo dentro de cada tratamento de adubação nitrogenada, verificando a capacidade do sensor em detectar a variabilidade em áreas com um mesmo tratamento, e (ii) com as médias das amostras em cada tratamento, avaliando a capacidade do sensor em detectar as diferenças provocadas por manejos variados de adubação nitrogenada. Os resultados obtidos demonstraram existência de correlação dos dados gerados pelos equipamentos utilizados (sensor terrestre GREENSEEKER, satélites RAPIDEYE e RPA EBEE) com a produtividade de biomassa seca da parte aérea e a concentração de N nas folhas de trigo. A SVR gerou coeficientes de correlação (r) mais expressivos do que a regressão linear sobre os dados obtidos com todos os equipamentos utilizados. Dentre as plataformas, considerando a abordagem com as amostras aleatórias no campo, os dados gerados com a RPA EBEE apresentaram correlação mais estreita com a estimativa de biomassa da parte aérea e a concentração foliar de N. Já, quando se consideraram as médias dos tratamentos de adubação nitrogenada, tanto a RPA EBEE como os satélites RAPIDEYE apresentaram resultados similares na estimativa de produtividade de biomassa da parte aérea. Porém, para a predição do teor foliar de N, a RPA EBEE proporcionou resultados superiores em relação aos obtidos com os satélites RAPIDEYE. Concluiu-se que a plataforma RPA EBEE foi mais eficiente do que as plataformas terrestre (GREENSEEKER) e orbital (satélites RAPIDEYE) para estimar a produtividade de biomassa da parte aérea e a concentração de N nas folhas de trigo, quando existe maior variabilidade na área de estudo, e que a SVR foi uma técnica mais eficiente do que a regressão linear para análise dos dados das três plataformas: orbital, aérea e terrestre. / Estimating biomass productivity in agriculture is a key part in crop management, providing information that can help the complex decision making in the field. Nitrogen (N), for being a nutrient that participates in the structure and vital cellular functions to the plant, has a close correlation with biomass productivity, mainly in wheat crop (Triticum aestivum L.). Remote sensing (RS), which consists of acquiring information from an object without contact between the sensor and the target, is a widely employed technique in estimating biomass and nutritional status of N. There are three RS platforms for obtaining data: orbital, with satellites; aerial, with aircraft, helicopters and remotely piloted aircraft (RPA); and terrestrial, with optical sensors and spectral radiometers. When determining biomass productivity and N foliar content estimation models, both RS platforms are employed, and commercial products for these purposes already exists. However, there is a lack of information regarding the efficiency of the three platforms in the same experimental area. Traditionally, predictive models with RS data in agriculture are generated by classic statistical techniques, such as linear regression. However, data mining (DM) techniques can provide more relevant results. Due to its generalization capacity and feature of creating linear and nonlinear models, support vector machine for regression (SVR) is a DM technique with intensive use over RS data. The goals of this work were: (i) to evaluate the correlation between data obtained from the three RS platforms for estimating dry biomass productivity and N concentration in wheat leaves, and (ii) to compare the results obtained with a classical linear regression technique against those of the SVR technique. Were cultivated wheat plants, TBIO Sinuelo variety, in different environments involving distinct management of nitrogen fertilization. The sensors evaluation was performed in two ways: (i) with random samples at different wheat crop development stages for each nitrogen fertilization treatment, aiming to verify the sensor ability to detect variability in areas with the same treatment, and (ii) considering the mean value of the samples in each treatment, evaluating the ability of the sensor to detect the differences caused by varied management of nitrogen fertilization. The results showed that data generated by the equipment (GREENSEEKER terrestrial sensor, RAPIDEYE satellites and RPA EBEE) displayed correlation with dry biomass productivity and N concentration in wheat leaves. More expressive correlation coefficients (r) were obtained with SVR against those of linear regression in the data obtained with all equipment used. Considering the approach with the random samples in the field, data generated with the RPA EBEE showed a closer correlation with the biomass estimation and the foliar concentration of N. When considering the mean value of nitrogen fertilization treatments, both RPA EBEE and RAPIDEYE satellites presented similar results for estimating biomass productivity, however, the RPA EBEE provided results slightly higher than those obtained with the RAPIDEYE satellites for the prediction of N foliar content. It was concluded that, for estimating the biomass productivity and the N concentration in the wheat leaves RPA EBEE platform is more efficient than the terrestrial (GREENSEEKER) and orbital platforms (RAPIDEYE satellites) when there is greater variability in the study area. Also, SVR was a more efficient technique than linear regression for data analysis of the three platforms: orbital, aerial and terrestrial.
17

Diferenciação do padrão de malignidade e benignidade de massas em imagens de mamografias usando padrões locais binários, geoestatística e índice de diversidade / DIFFERENTIATION OF PATTERNS OF MALIGNANCY AND BENIGNITY OF MASSES IN MAMMOGRAPHIC IMAGES USING LOCAL BINARY PATTERNS, GEOSTATISTICS AND DIVERSITY INDEX

ROCHA, Simara Vieira da 22 May 2014 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T19:19:25Z No. of bitstreams: 1 SimaraRocha.pdf: 3984461 bytes, checksum: 04243e2b6ab9b63b0b73e436ebc9fc23 (MD5) / Made available in DSpace on 2017-08-14T19:19:25Z (GMT). No. of bitstreams: 1 SimaraRocha.pdf: 3984461 bytes, checksum: 04243e2b6ab9b63b0b73e436ebc9fc23 (MD5) Previous issue date: 2014-05-22 / Breast cancer is the second most frequent type of cancer in the world, being more common among women, and representing 22% of the new cases every year. A precocious diagnosis improves the chances of a successful treatment. Mammography is one of the best ways to precocious detection of non-palpable tumor that could lead to a breast cancer. However, it is well known that this exam's sensibility may vary a lot. This is due to factors such as: the specialist's experience, patient's age and the quality of the exam image. The use of Image Processing and Machine Learning techniques has becoming a strong contribution to the specialist diagnosis task. Thes thesis proposes a methodology to discriminate patterns of malignancy and benignity of masses in mammographic images using texture analysis and machine learning. For this purpose, the methodology combines structural and statistical approaches for the analysis of texture regions extracted from mammograms. Furthermore, this research extends the concept of Diversity Index through the use of species co-occurrence information in order to increase the efficiency of extraction of texture features. The techniques used are Local Binary Pattern, Ripley's K function and diversity indexes (Shannon, Mcintosh, Simpson, Gleason and Menhinick indexes). The extracted texture is classified using a Support Vector Machine into benign and malignant classes. The best results obrained with Ripley's K function were 92,20% of accuracy, 92,96% of sensibility, 91,26% of specificity, 10.63 of likelihood positive ratio, 0,07 of likelihood negative ratio and an area under ROC curve Az of 0,92. / O câncer de mama é o segundo tipo de câncer mais frequente no mundo, sendo mais comum entre as mulheres, respondendo por 22% dos casos novos a cada ano. Quanto mais precocemente for diagnosticado, maiores serão as chances de se realizar um tratamento bem sucedido. A mamogra fia é uma das formas de detectar os tumores não palpáveis que causam câncer de mama. Todavia, sabe-se que a sensibilidade desse exame pode variar bastante, devido a fatores como: a experiência do especialista, a idade do paciente e a qualidade das imagens obtidas no exame. O uso de técnicas de Processamento de Imagens e Aprendizagem de Máquina tem contribuído, cada vez mais, para auxiliar os especialistas na realização de diagnósticos mais precisos. Esta tese propõe uma metodologia para discriminar padrões de malignidade e benignidade de massas em imagens de mamogra fias, utilizando análise de textura e aprendizado de máquina. Para tanto, a metodologia combina as abordagens estrutural e estatística para a análise de textura de regiões extraídas das mamogra fias. Além disso, esta pesquisa amplia o conceito de Índice de Diversidade, através do uso da informação de co-ocorrência de espécies, com o propósito de aumentar a e ficiência da extração de características de textura. Assim, são usadas as técnicas de Local Binary Pattern, Função K de Ripley e os Índices de Shannon, Mcintosh, Simpson, Gleason e de Menhinick. Por fi m, a textura extraída e classi ficada utilizando a Máquina de Vetores de Suporte, visando diferenciar as massas malignas das benignas. O melhor resultado foi obtido usando a função K de Ripley com 92,20% de acurácia, 92,96% de sensibilidade, 91,26% de especi cidade, 10,63 de razão de probabilidade positiva, 0,07% de razão de probabilidade negativa e uma área sob a curva ROC (Az) de 0,92.
18

DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. / Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.

NUNES, André Pereira 20 February 2009 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-21T14:59:23Z No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) / Made available in DSpace on 2017-08-21T14:59:23Z (GMT). No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) Previous issue date: 2009-02-20 / Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average. / O câncer de mama é uma das maiores causas de mortalidade entre as mulheres no mundo todo. Atualmente, a análise da radiografia da mama é o recurso mais utilizado na detecção precoce desse tipo de câncer, pois possibilita a identificação de anomalias em sua fase inicial, fator fundamental para o sucesso do tratamento. A sensibilidade desse tipo de exame, no entanto, depende de diversos fatores, tais como tamanho e localização das anomalias, densidade do tecido mamário, qualidade dos recursos técnicos e habilidade do radiologista. Este trabalho apresenta uma metodologia para detecção de massas em imagens digitais de mamografias que poderá auxiliar o especialista em sua análise. O método proposto utiliza o algoritmo de agrupamento K-Means e a técnica de Template Matching para segmentar as regiões suspeitas de conterem massas. Em seguida, medidas de geometria e textura são extraídas de cada uma dessas regiões, sendo a textura descrita através do Índice de Diversidade de Simpson, uma estatística usada na Ecologia para mensurar a biodiversidade de um ecossistema. Finalmente, essas informações são submetidas a uma Máquina de Vetores de Suporte para que as regiões suspeitas sejam classificadas em massas ou não massas. A metodologia foi testada com 650 imagens mamográficas obtidas da base de dados DDSM, atingindo 83,94% de acurácia, 83,24% de sensibilidade, e 84,14% de especificidade em média.
19

CLASSIFICAÇÃO DE MASSAS NA MAMA A PARTIR DE IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SHANNON-WIENER / CLASSIFICATION OF BREAST MASSES IN MAMMOGRAPHY IMAGES FROM USING INDEX OF SHANNON-WIENER DIVERSITY

Sousa, Ulysses Santos 13 May 2011 (has links)
Made available in DSpace on 2016-08-17T14:53:17Z (GMT). No. of bitstreams: 1 Ulysses Santos Sousa.pdf: 1410915 bytes, checksum: 88235f7f4a3bc07a4da1b27c23dc71ca (MD5) Previous issue date: 2011-05-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Cancer is one of the biggest health problems worldwide, and the breast cancer is the one that causes more deaths among women. Also it is the second most frequent type in the world. The chances of survival for a patient with breast cancer increases the sooner this disease is discovered. Several Computer Aided Detection/Diagnosis Systems has been used to assist health professionals. This work presents a methodology to discriminate and classify mammographic tissues regions in mass and non-mass. For this purpose the Shannon-Wiener‟s Diversity Index, which is applied to measure the biodiversity in ecosystem, is used to describe pattern of breast image region with four approaches: global, in circles, in rings and directional. After, a Support Vector Machine is used to classify the regions in mass and non-mass. The methodology presents promising results for classification of mammographic tissues regions in mass and non-mass, achieving 99.85% maximum accuracy. / O câncer é um dos maiores problemas de saúde mundial, sendo o câncer de mama o que mais causa óbito entre as mulheres e o segundo tipo mais freqüente no mundo. As chances de uma paciente sobreviver ao câncer de mama aumentam à medida que a doença é descoberta mais cedo. Diversos Sistemas de Detecção e Diagnóstico auxiliados por computador (Computer Aided Detection/Diagnosis) têm sido utilizados para auxiliar profissionais de saúde. Este trabalho apresenta uma metodologia de discriminação e classificação de regiões de tecidos de mamografias em massa e não massa. Para este propósito utiliza-se o Índice de Diversidade de Shannon-Wiener, comumente aplicado para medir a biodiversidade em um ecossistema, para descrever padrões de regiões de imagens de mama com quatro abordagens: global, em círculos, em anéis e direcional. Em seguida, utiliza-se o classificador Support Vector Machine para classificar estas regiões em massa e não massa. A metodologia apresenta resultados promissores para a classificação de regiões de tecidos de mamografia em massa e não massa, obtendo uma acurácia máxima de 99,85%.
20

The aCDOM spatial and temporal distribution analysis in Funil reservoir / Análise da distribuição espaço-temporal do aCDOM no reservatório de Funil

Martins, Sarah Cristina Araújo [UNESP] 03 August 2017 (has links)
Submitted by SARAH CRISTINA ARAUJO MARTINS null (sarahca.martins@gmail.com) on 2017-08-27T12:54:53Z No. of bitstreams: 1 Dissertacao_MartinsSarah.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-08-29T17:18:44Z (GMT) No. of bitstreams: 1 martins_sca_me_prud.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5) / Made available in DSpace on 2017-08-29T17:18:44Z (GMT). No. of bitstreams: 1 martins_sca_me_prud.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5) Previous issue date: 2017-08-03 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A matéria orgânica dissolvida (DOM) é a componente da água que pode ser usada como indicativo de sua qualidade, pois possui duas fontes: uma alóctone, relacionada com descargas de material terrestre, estando vinculada aos ácidos húmicos, e outra autóctone, associada às descargas fluviais ou produção própria do corpo hídrico estudado, estando relacionada aos ácidos fúlvicos. A matéria orgânica dissolvida colorida (CDOM) é a fração colorida da DOM, que pode ser usada como proxy para a observação desta última em águas interiores. O reservatório hidrelétrico de Funil (FHR) foi o corpo hídrico escolhido como área de estudo deste trabalho. Neste contexto, o objetivo geral desta pesquisa foi identificar e avaliar as mudanças no coeficiente de absorção da CDOM (aCDOM) na superfície da água ao longo do tempo (1995 – 2010), bem como entender a sua relação com mudanças no uso e cobertura da terra (LULC) na bacia de contribuição do FHR. Para alcançar tal objetivo foram realizados: (i) o mapeamento histórico de LULC (1995 – 2010, com 5 anos de intervalo) para detecção de mudanças; (ii) o estudo de um conjunto de modelos bio-ópticos baseados na literatura, bem como de um novo modelo empírico desenvolvido para estimar aCDOM via reflectância simulada (Rrs_simulated) para o sensor Thematic Mapper (TM); (iii) a distribuição espaço-temporal do aCDOM por meio da aplicação de um modelo bio-óptico em imagens TM/Landsat-5 de 1995 a 2010, e (iv) a análise das fontes possíveis de CDOM/DOM , assim como do comportamento/distribuição do aCDOM no FHR ao longo do tempo. Assim, o primeiro estudo desenvolvido nesta pesquisa foi o da parametrização do algoritmo maquinas de vetores de suporte (SVM) de acordo com as características da área de estudo para classificação supervisionada de LULC na bacia de contribuição do FHR. A detecção de mudança da classificação obtida para LULC demonstrou que a parametrização proposta para o SVM tornou o algoritmo capaz de diferenciar classes grandes e contínuas, classes estreitas e alongadas, além de áreas não contínuas e pequenas localizadas dentro de outra classe maior. A classificação obtida para o SVM apresentou boa avaliação estatística, com acurácia geral entre 86% e 96% para toda a série temporal, acurácia do produtor de 90%, acurácia do usuário maior do que 86% e índice Kappa entre 86% e 91%. Ainda, foi observado que o LULC desenvolvido na área de estudo se manteve relativamente estável ao longo da série histórica analisada. O segundo estudo realizado proporcionou o desenvolvimento de um modelo empírico em um comprimento de onda (485 nm) e uma razão de bandas (B4/B1) alternativos para estimativa de aCDOM via Rra_simulated para o TM/Landsat-5 (RMSE = 7%, Nash = 0.91). Este modelo também pôde identificar mesmo pequenas variações nos valores de reflectância via dados orbitais, assim como pode diferenciar variações sutis no aCDOM. Ainda, foram identificados dois padrões de comportamento da CDOM para o FHR: um associado ao LULC e à ocorrência de chuva/lixiviação, bem como outro relacionado à Clorofila-a (Chl-a) em situações de floração de algas. Os referidos estudos que compõe esta pesquisa foram padronizados como artigos científicos para a confecção deste documento. O primeiro estudo, sobre a parametrização do SVM, foi publicado na revista Modelling Earth Systems Environment – Springer (DOI 10.1007/s40808-016-0190-y). O segundo estudo, sobre a distribuição histórica do aCDOM está na etapa de revisão para futura submissão. / The dissolved organic matter (DOM) is a water compound related to water quality, since it has two sources: one allochthonous, related to terrestrial discharges that can be linked to humic acids, and another autochthonous, associated with river input and itself production, so related to or fulvic acids. The colored dissolved organic carbon (CDOM) is the colored fraction of DOM that could be used as a proxy for its occurrence in inland waters. The Funil hydroelectric reservoir (FHR) was chosen as the study site for this work. In this context, the general aim of this research was to identify and to evaluate the changes in CDOM absorption coefficient (aCDOM) at the water surface over time (1995 – 2010), and to understand its relationship with land cover land use (LULC) changes in FHR watershed. For match this goal, (i) a LULC historical mapping (1995 – 2010, with 5 years of interval) was made to change detection, (ii) a bio-optical model set and a new model were studied in order to estimate aCDOM from simulated reflectance (Rrs_simulated) for Thematic Mapper (TM) sensor, (iii) a aCDOM spatial and temporal distribution was obtained by applying a bio-optical model in TM/Landsat-5 imagery from 1995 to 2010, and (iv) the possible CDOM/DOM sources in FHR were found, as well aCDOM historical behavior/distribution over time was analysed. Thus, the first study was the support vector machine algorithm (SVM) parameterization according to study area characteristics to LULC supervised classification in FHR watershed. The obtained LULC change detection analysis demonstrates that the proposed SVM parameterization made the algorithm able to differentiate large and continuous classes, lengthy and thin areas, and non-continuous small areas located inside wide classes. The obtained classification had great statistics with overall accuracy among 86% and 98% over the time series, the producer accuracy of 90%, the user accuracy higher than 86%, and the Kappa statistics ranged from 86% to 91%. In addition, no significant changes in LULC were identified in the study site over all time series. The second study provides a bio-optical model at alternatives wavelength (485 nm) and a band ratio (B4/B1) for aCDOM estimation using simulated Rrs for TM/Landsat-5 (RMSE = 7%, Nash = 0.91). This model could identify even small variations in reflectance values from orbital data, as well as differentiate even slight alterations in aCDOM. Two significantly different aCDOM behaviors were also identified for FHR: one associated with LULC and rainfall/runoff occurrence, and other correlated to Chlorophyll-a high concentrations (Chl-a) in algal blooms situations. The referred studies that compose this research ware standardized as academic articles in this document. The first study, about SVM parameterization, was published yet in Modeling Earth Systems Environment – Springer (DOI 10.1007/s40808-016-0190-y). The second study, about aCDOM historical distribution is in the revision step to future submission.

Page generated in 0.1363 seconds