Spelling suggestions: "subject:"mécanique celeste"" "subject:"mécanique célere""
11 |
Dynamique séculaire du problème des trois corps appliqué aux systèmes extrasolaires / Secular dynamics of the exoplanetary three-body problemLibert, Anne-Sophie 24 October 2007 (has links)
La découverte de planètes extrasolaires d'excentricités importantes ravive l'intérêt pour la dynamique des systèmes planétaires. Ce travail a pour objet l'étude analytique du problème séculaire des trois corps, grâce à une généralisation de la théorie de Laplace-Lagrange obtenue en poussant le développement de la perturbation à un ordre largement supérieur en excentricités et en inclinaisons. Nous montrons que cette approche est apte à décrire la dynamique séculaire d'un système planétaire formé de deux planètes hors résonance en moyen mouvement. Une vérification analytique de la proximité du système à une quelconque résonance en moyen mouvement est également entreprise. Tant dans le cas de systèmes coplanaires que de systèmes tridimensionnels, deux optiques sont poursuivies: d'une part, l'analyse des équilibres du problème séculaire et des implications de ces derniers sur la structure de l'espace de phase et d'autre part, le calcul des fréquences fondamentales de ce même problème permettant la reproduction de l'évolution temporelle du système planétaire, grâce à une méthode totalement analytique basée sur les transformées de Lie. Nous disposons ainsi d'un modèle analytique fiable et peu coûteux pouvant prendre en compte un large éventail de paramètres et qui peut être appliqué avec précision aux systèmes extrasolaires hors résonance en moyen mouvement. /
The discovery of extrasolar planets with large eccentricities renews interest in the study of the dynamics of planetary systems. This work is concerned with the analytical study of the secular three-body problem by means of a generalization of the Laplace-Lagrange theory based on a high-order expansion of the disturbing potential in the eccentricities and the inclinations. We show that this approach is able to describe the secular dynamics of a two-planets system not close to a mean motion resonance. The proximity of a system to any mean motion resonance is also analytically investigated. For coplanar and tridimensional systems, we pursue a twofold objective: on the one hand, the study of the equilibria of the secular problem and their implications on the structure of the phase space and on the other hand, the computation of both the fundamental frequencies of the problem and the long-term time evolution of the planetary system with a totally analytical method based on Lie transforms. This reliable time-saving analytical model can take into account a large spectrum of parameters and can be applied successfully to non-resonant extrasolar systems.
|
12 |
Le quasi-satellites et autres configurations remarquables en résonance co-orbitale / Around quasi-satellites and remarkable configurations in the co-orbital resonancePousse, Alexandre 30 September 2016 (has links)
L'ensemble des travaux menés au cours de cette thèse concerne l'étude de la résonance co-orbitale. Ce domaine de trajectoires particulières, où un astéroïde et une planète gravitent autour du Soleil avec la même période de révolution, possède une dynamique très riche liée aux célèbres configurations équilatérales de Lagrange, L4 et L5, ainsi qu'aux configurations alignées de Euler, L1, L2 et L3. Un exemple majeur dans le système solaire est donné par les astéroïdes « troyens » qui accompagnent Jupiter au voisinage des équilibres L4 et L5. Une deuxième configuration étonnante est donnée par les satellites Janus et Épiméthée qui gravitent autour de la planète Saturne ; suite à la forme décrite par la trajectoire d’un des satellites dans un repère tournant avec l’autre, la dynamique résultante est appelée « fer-à-cheval ». Un nouveau type de dynamique a été récemment misen évidence dans le contexte de la résonance coorbitale : les « quasi-satellites ». Il s’agit de configurations remarquables où, dans un repère tournant avec la planète, la trajectoire de l’astéroïde correspond à celle d’un satellite rétrograde. Des astéroïdes accompagnant les planètes Venus, Jupiter et la Terre ont notamment été observés dans ces configurations. La dynamique des quasi-satellites possède un grand intérêt, pas seulement parce qu’elle relie les différents domaines de la résonance co-orbitale (voir les travaux de Namouni, 1999) mais aussi parce qu’elle semble faire le pont entre les notions de satellisation et celles de trajectoires héliocentriques. Cependant, bien que le terme « quasi-satellite" soit devenu dominant dans la communauté de mécanique céleste, certains auteurs utilisent plutôt la terminologie « satellite rétrograde » révélant ainsi une ambiguïté sur la définition de ces trajectoires. Les récentes découvertes autour des exo-planètes ont motivé le développement de travaux concernant la résonance co-orbitale dans le problème des trois corps planétaire. Dans ce contexte Giuppone et al. (2010) ont mis en évidence (par une méthode numérique) les quasisatellites ainsi que des nouvelles familles de configurations remarquables : les orbites « anti-Lagrange ». La troisième partie de thèse présente alors une méthode analytique pour l'étude planétaire, permettant de révéler analytiquement les orbites anti-Lagrange ainsi qu'une esquisse d'étude des quasisatellites en adaptant à ce contexte plus général la méthode présentée dans la seconde partie. Pour ces raisons, la première partie de cette thèse a consisté à clarifier la définition de ces orbites en revisitant le cas circulaire-plan (trajectoires coplanaires avec la planète qui gravite sur une orbite circulaire) dans le cadre du problème moyen. Dans la deuxième partie de cette thèse, nous avons développé une méthode analytique apte à explorer le domaine des quasi-satellites dans le cadre du problème moyen. Nous avons réalisé cette exploration dans le cas circulaire-plan et proposé une extension aux cas excentrique-plan et circulaire-spatial. / This work of thesis focuses on the study of the coorbital resonance. This domain of particular trajectories, where an asteroid and a planet gravitate around the Sun with the same period possesses a very rich dynamics connected to the famous Lagrange’s equilateral configurations L4 and L5, as well as to the Eulerian’s configurations L1, L2 and L3. A major example in the solar system is given by the “Trojan” asteroids harboured by Jupiter in the neighborhood of L4 and L5. A second astonishing configuration is given by the system Saturn-Janus-Epimetheus; this peculiar dynamics is known as “horseshoe”. Recently, a new type of dynamics has been highlighted in the context of co-orbital resonance: the quasi-satellites. They correspond to remarkable configurations : in the rotating frame with the planet, the trajectory of the asteroid seems the one of a retrograde satellite. Some asteroids harboured by Venus, Jupiter and the Earth have been observed in this kind of configuration. The quasi-satellite dynamics possesses great interest not only because it connects the different domains of the co-orbital resonance (see works of Namouni, 1999), but also because it seems to bridge the gap between satellization and heliocentric trajectories. However, despite the term quasi-satellite has become dominant in the celestial mechanics community, some authors rather use the term “retrograde satellite”. This reveals an ambiguity on the definition of these trajectories. For these reasons, the first part of this thesis consisted in clarifying the definition of these orbits by revisiting the planar-circular case (planet on circular motion) in the framework of the averaged problem. In the second part of this thesis, we developed an analytic method to explore the quasi-satellite domain in the averaged problem. We realized this exploration in the planar-circular case and proposed an extension to the planar-eccentric and spatial-circular cases. The recent discoveries around the exo-planets motivated some works on the co-orbital resonance in the planetary Three-Body Problem. In this context, Giuppone et al. (2010) highlighted (numerically) the quasi-satellite as well as new families of remarkable configurations: the “anti-Lagrange”. Then the third part of this thesis presents an analytical method for the planetary problem that allows to reveal the anti-Lagrange orbits as well as a sketch of study of quasi-satellite trajectories.
|
13 |
Outils analytiques et numériques pour la dynamique des systèmes planétaires extra-solaires en résonance ou non / Analytical and numerical tools for the dynamics of extrasolar planetary systems in resonance or notDelisle, Jean-Baptiste 15 September 2014 (has links)
Les systèmes multi-planétaires détectés par la mission Kepler présentent un excès de paires de planètes proches de résonances de moyen mouvement d'ordre un (e.g. 2:1, 3:2) mais avec un rapport de périodes légèrement supérieur à la valeur résonante (e.g. Pext/Pint = 2.02 au lieu de 2). Différents mécanismes ont été proposés pour expliquer cette observation. Dans cette thèse, nous étudions la possibilité que ces systèmes étaient initialement en résonance et ont atteint leur configuration actuelle à cause de la dissipation par effet de marée dans les planètes. De manière plus générale, nous établissons des critères analytiques permettant de prévoir l'évolution à long terme de systèmes en résonance d'ordre quelconque en présence de dissipation de marée. Nous montrons que cette évolution dépend de l'importance relative de la dissipation dans chacune des deux planètes. L'état final d'un système n'est pas le même suivant que la planète subissant la plus forte dissipation est la planète interne ou la planète externe. Ainsi, à partir de la configuration actuellement observée et plus spécifiquement du rapport de périodes de deux planètes proches d'une résonance, on peut déduire quelle planète a subi la dissipation la plus importante. Cela donne des contraintes importantes sur la nature des planètes considérées, car il est communément admis que les planètes rocheuses dissipent plus fortement par effet de marée que les planètes gazeuses. / Multi-planetary systems discovered by the Kepler mission present an excess of planet pairs close to first-order mean-motion resonances (e.g. 2:1, 3:2) but with a period ratio slightly higher than the resonant value (e.g. Pout/Pin = 2.02 instead of 2). Several mechanisms have been proposed to explain this observation. In this thesis, we investigate the possibility that these systems were initially in resonance and reached their current configuration due to tidal dissipation in the planets. More generally, we establish analytical criteria for predicting the long term evolution of systems locked in resonances of any order undergoing tidal dissipation. We show that this evolution depends on the relative importance of the dissipation in each of both planets. The final state of a system depends on whether the planet undergoing the stronger dissipation is the inner or the outer planet. Therefore, from the currently observed configuration and more specifically the period ratio of two planets close to a resonance, one can deduce which of both planet underwent the strongest dissipation. This provides important constraints on the nature of the considered planets, since it is commonly accepted that rocky planets dissipate more strongly by tidal effect than gaseous planets.
|
14 |
Study of a recent 5-1 mean motion resonance between Titan and Iapetus / Etude d'une récente résonance 5-1 en moyen mouvement entre Titan et JapetPolycarpe, William 29 October 2018 (has links)
Lorsqu’un fort effet de marée entre Saturne et ses satellites de glace a été révélé il y a plusieurs années, le système a été sujet à des nombreux questionnements concernant sa formation et son évolution. Une implication importante de ces résultats est que les satellites sont plus jeunes que la planète et ont subi d’importantes modifications orbitales durant leurs évolutions, rendant possible plusieurs traversées en résonance. Dans cette thèse, nous cherchons à vérifier le scénario selon lequel Titan serait à l’origine de l’orbite actuelle de Japet. Si Titan a fortement migré lui aussi, alors il a dû traverser la résonance 5:1 avec Japet. Or, l’orbite de Japet admet deux éléments orbitaux dont les origines restent à être déterminées clairement : d’une part une inclinaison de 8 degrés par rapport à son plan de Laplace et d’autre part, une orbite excentrique d’environ 0,03. En plaçant initialement Japet sur une orbite circulaire et coplanaire avec le plan de Laplace, de nombreuses simulations numériques de la traversée en résonance, utilisant un code N-Corps ainsi qu’un modèle semi-analytique, ont été réalisées. L’analyse des simulations montre que les résultats sont très dépendants de la dissipation interne de la planète, paramétrée par le facteur de qualité Q. Pour des valeurs au-delà d’environ 2000, on obtient en majorité l’éjection de Japet lorsque Titan traverse la résonance. Pour des vitesses de migration élevées (Q en dessous de 100 environ) Japet est très peu perturbé par Titan. Le nombre d’éjections croît avec la valeur de Q et pour des valeurs entre 100 et 2000 la plupart des simulations montrent une capture en résonance, une évolution chaotique de l’excentricité et de l’inclinaison, puis une libération avec des éléments orbitaux perturbés. La valeur des excentricités après la résonance varie entre 0 et 0.15 et l’inclinaison peut croître jusqu’à 11 degrés. Sur 800 simulations effectuées avec le code N-Corps, 2 montrent une sortie de résonance de Japet avec des éléments en accord avec ceux observés actuellement. De plus, en comptant celles venant du modèle semi-analytique, plus d’une vingtaine montrent une inclinaison libre ayant dépassé 4 degrés. Ces simulations numériques nous ont permis de contraindre le facteur de dissipation de la planète à la fréquence de Titan. C’est pour une valeur de Q entre 100 et 2000 que les simulations de traversée en résonance rendent compte au mieux de l’orbite actuelle de Japet, rendant ainsi plausible le scénario d’un récente perturbation de Japet par Titan lors de la traversée de la résonance 5:1. / When a strong tidal interaction between Saturn and its icy satellites was revealed a few years ago, the formation of the system and its evolution were subject to questioning. These results imply that the satellites are younger than the planet and underwent important orbital modifications during their evolution, making possible many mean motion resonance crossings between satellites. In this thesis, we assume that Titan migration is also important, increasing its semi-major axis in time, and crossing a 5:1 resonance with Iapetus. Today, Iapetus’ orbital plane is tilted with respect to a natural equilibrium plane called the Laplace plane, on which a satellite should have naturally been formed. But, among having non-null eccentricity, Iapetus’ orbit stays on a constant 8 degree tilt with respect to this equilibrium plane. We are therefore assessing the possibility for Titan to be responsible for Iapetus’ orbit.Starting with Iapetus on a circular orbit with its orbital plane co-planar with the Laplace plane, we have used a N-Body code and a semi-analytic model to perform numerous numerical simulations.The analysis of the simulations show that the results are very dependent on the quality factor, Q. For values greater than 2000, Iapetus is more likely to get ejected during the crossing of the resonance, whereas setting a fast migration for Titan (Q below 100) avoids any strong perturbation of Iapetus’ orbit. The ejection likelihood increases with Q and for values between 100 and 2000, many simulations show a resonance capture, followed by a chaotic evolution of the eccentricity and the inclination, then a release with perturbed orbital elements. The range of values for post-resonance eccentricities are between 0 and 0.15 while the tilt can grow up to 11 degrees. Out of 800 simulations done with the N-Body code, 2 show elements compatible with Iapetus’ actual orbit. In addition, more than twenty simulations show a tilt having raised over 4 degrees if we count the simulation done with the semi-analytic model.These numerical simulations allowed us to constrain the tidal dissipation of the planet at Titan’s frequency. Some simulations performed with Q between 100 and 2000 account for the orbit of Iapetus we observe today, making plausible the scenario where the resonance with Titan was the source of Iapetus’ perturbed orbit.
|
15 |
Numerical N-body approach to binary asteroid formation and evolutionComito, Carlo 03 April 2012 (has links) (PDF)
Les astéroïdes binaires ont un rôle d'importance fondamentale dans la détermination de paramètres astéroïdales difficilement mesurables de la Terre, en particulier la masse. En étudiant l'origine des binaires dans le cadre des agrégats gravitationnels, ils servent ainsi comme laboratoires naturels pour la physique des systèmes granulaires à basse gravité, et ils nous donnent des éléments précieux pour la modélisation globale des astéroïdes. Vue la grande diversité existante de caractéristiques des systèmes binaires observés, nombreuses hypothèses ont été postulées pour leur origine (fragmentation catastrophique d'un corps et ré-accumulation sous forme binaire, influences de marée par les planètes, cratérisation, YORP ...). Dans cette thèse nous explorons, grâce à des simulations numériques à N corps, la dynamique d'un agrégat gravitationnel en dehors du régime de stabilité pour un corps simple, en cherchant les configurations les plus favorables à la formation d'un système binaire. Dans une première partie, nous montrons que dans un scénario catastrophique la formation de systèmes binaires est normale, ces-ci bien reproduisant la variété présente dans la population observée. En suite, nous explorons la possibilité d'une déformation progressive d'un agrégat vers un système binaire sous l'action d'une force perturbante agissant lentement jusqu'à la fission éventuelle du corps. Nos résultats proposent des nouveaux regards dans l'étude de la formation des astéroïdes binaires, comme montré par une comparaison avec les observations et la littérature existante.
|
16 |
Théorie Générale Planétaire. Eléments orbitaux des planètes sur 1 million d'annéesLaskar, Jacques 19 June 1984 (has links) (PDF)
Dans ce travail, les équations moyennes des mouvements planétaires sont calculées à un ordre élevé grâce à une programmation en calcul formel dédié. Le système résultant comprend plus de 150 000 termes polynomiaux et fournit une très bonne approximation de l'évolution à long terme du système solaire. Le système d'équations est développé à ordre 2 dans les masses et l'ordre 5 en excentricité et inclinaison. le système de degré 3 est intégré analytiquement au premier ordre ce qui fournit une solution de plus de 25 000 termes. Le problème des petits diviseurs séculaires est discuté et une liste de petits diviseurs de grande amplitude dans la solution est donnée, le terme principal étant lié à l'argument $ g_1-g_5 + (s_2-s_1) $ qui intervient dans l'excentricité de Mercure et de Jupiter, et dans l'inclinaison de Mercure et de Vénus. Il est démontré que la présence de ces diviseurs compromet grandement la construction d'une solution analytique, sans tenir compte du fait que la même solution de degré 5 comprend plus de 3 000 000 termes. Les équations séculaires sont ensuite intégrées numériquement d'une façon très efficace sur plus de 1 million d'années, avec un pas de 500 ans pour toutes les planètes, après avoir rajouté la contribution moyenne de la relativité générale et de la Lune. Par comparaison avec les éphémérides DE102 sur plus de 3000 ans, il est démontré que les équations séculaires représentent très bien l'évolution à long terme du système solaire.
|
17 |
Dissipation des marées thermiques atmosphériques dans les super-Terres / Tidal dissipation of thermal atmospheric tides in super-EarthsAuclair-Desrotour, Pierre 16 September 2016 (has links)
Cette thèse traite de la modélisation des marées fluides des planètes telluriques du système solaire et des systèmes exoplanétaires.En premier lieu, nous examinons la réponse de marée des couches atmosphériques, soumises au potentiel de marée gravifique et au forçage thermique de l’étoile hôte du système. Nous proposons un nouveau modèle global prenant en compte les processus dissipatifs avec un refroidissement newtonien, modèle à partir duquel nous traitons la dynamique des ondes de marées engendrées par ces forçages, et quantifions leur dissipation, le nombre de Love et le couple de marée exercé sur la couche atmosphérique en fonction de la fréquence de forçage. Ceci nous permet d'étudier l'ensemble des configurations possibles depuis les planètes au voisinage de la synchronisation telles que Vénus jusqu'aux rotateurs rapides tels que la Terre.En second lieu, nous développons une approche similaire pour les océans de planètes de type terrestre, où la friction visqueuse effective de la topographie est prise en compte, à partir de laquelle nous quantifions la réponse de marée d’un océan global potentiellement profond et sa dépendance à la fréquence d’excitation. Dans ce cadre, et ce grâce à des modèles locaux, nous caractérisons de manière détaillée les propriétés des spectres en fréquence de la dissipation engendrée par les ondes de marées au sein des couches fluides planétaires (et stellaires) en fonction des paramètres structurels et dynamiques de ces dernières (rotation, stratification, viscosité et diffusivité thermique). / This thesis deals with the modeling of fluid tides in terrestrial planets of the Solar system and exoplanetary systems.First, we examine the tidal response of atmospheric layers, submitted to the tidal gravitational potential and the thermal forcing of the host star of the system. We propose a new global model taking into account dissipative processes with a Newtonian cooling, model that we use to treat the dynamics of tidal waves generated by these forcings, and to quantify their dissipation, the Love number and the tidal torque exerted on the atmospheric layer as a function of the forcing frequency. This allows us to study possible configurations from planets close to synchronization such as Venus to rapid rotators such as the Earth.Second, we develop a similar approach for the oceans of terrestrial planets where the action of topography is taken into account thanks to an effective viscous friction. From this modeling, we quantify the tidal response of a potentially deep global ocean and its dependence of the tidal frequency. In this framework, and by using local models, we characterize in detail the properties of the frequency spectra of dissipation generated by tidal waves within fluid planetary (and stellar) layers as functions of the structural and dynamical parameters of these latters (rotation, stratification, viscosity and thermal diffusivity).
|
18 |
Rotation à long terme des corps célestes et application à Cérès et Vesta / Long-term rotation of celestial bodies and application to Ceres and VestaVaillant, Timothée 06 July 2018 (has links)
Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation à long terme de Cérès et Vesta, les deux corps les plus massifs de la ceinture principale d’astéroïdes. Ils sont l’objet d’étude de la sonde spatiale Dawn, qui a permis de déterminer précisément les caractéristiques physiques et de rotation nécessaires au calcul de leurs rotations. La distribution de glace sous et à la surface de Cérès dépend du mouvement de son axe de rotation par le biais de l’obliquité, inclinaison de l’équateur sur l’orbite. Les rotations de Cérès et Vesta étant rapides, l’évolution à long terme des axes de rotation de Cérès et Vesta a été obtenue à l'aide d'une intégration symplectique des équations de la rotation, où une moyenne a été réalisée sur la rotation propre rapide. La stabilité des axes de rotation de Cérès et Vesta a été étudiée en fonction des paramètres de la rotation avec un modèle séculaire semi-analytique, qui a permis de montrer que les axes de rotation ne présentaient pas de caractère chaotique.La seconde partie concerne le développement d'intégrateurs symplectiques dédiés au corps solide. L'intégration de la rotation propre d'un corps solide nécessite d’intégrer les équations issues du hamiltonien du corps solide libre. Ce hamiltonien est certes intégrable et présente une solution explicite nécessitant l’usage des fonctions elliptiques de Jacobi, cependant le coût numérique de ces fonctions est élevé. Lorsque le hamiltonien du corps solide libre est couplé avec une énergie potentielle, l’orientation du corps doit être calculée à chaque pas d’intégration, ce qui augmente le temps de calcul. Des intégrateurs symplectiques ont ainsi été précédemment proposés pour le corps solide libre. Dans ce travail, des intégrateurs spécifiques au corps solide ont été développés en utilisant les propriétés de l’algèbre de Lie du moment cinétique. / This thesis concerns the long-term rotation of celestial bodies.The first part is a study of the long-term rotation of Ceres and Vesta, the two heaviest bodies of the main asteroid belt. The spacescraft Dawn studied these two objects and determined the physical and rotational characteristics, which are necessary for the computation of their rotations. The ice distribution under and on the surface of Ceres depends on the evolution of the obliquity, which is the inclination of the equatorial plane on the orbital plane. As the rotations of Ceres and Vesta are fast, the long-term evolution of the spin axes of Ceres and Vesta was obtained by realizing a symplectic integration of the equations of the rotation averaged on the fast proper rotation. The stability of the spin axes of Ceres and Vesta was studied with respect to the parameters of the rotation with a secular and semi-analytical model, which allowed to show that the spin axes are not chaotic.The second part concerns the development of symplectic integrators dedicated to the rigid body. The integration of the proper rotation of a rigid body needs to integrate the equations given by the Hamiltonian of the free rigid body. This Hamiltonian is integrable and presents an explicit solution using the Jacobi elliptic functions. However, the numerical cost of these functions is high. When the Hamiltonian of the free rigid body is coupled to a potential energy, the orientation of the body is needed at each step, which increases the computation time. Symplectic integrators were then previously proposed for the free rigid body. In this work, symplectic integrators dedicated to the rigid body were developed using the properties of the Lie algebra of the angular momentum.
|
19 |
Dynamique résonante des systèmes de Super-Terres / Resonant dynamics of Super-Earth systemsPichierri, Gabriele 23 September 2019 (has links)
Les observations de centaines de systèmes d’exoplanètes nous ont fourni un large échantillon de configurations orbitales. Les périodes orbitales figurent parmi les données les mieux connues et les plus étonnantes. Les Super-Terres, ces planètes caractérisées par une masse entre 1 et 20 masses terrestres et une période typiquement de moins de 100 jours, sont présentes autour de la plupart des étoiles. La distribution des rapports de leurs périodes orbitales défie les astrophysiciens : pendant leur formation et migration au sein de leur disque protoplanétaire, elles devraient former des chaînes de résonances de moyen mouvement, c’est-à-dire que les rapports des périodes orbitales de planètes voisines devraient être proches de fractions simples. Toutefois, la plupart des systèmes de Super-Terres ne sont pas résonants. Dans cette thèse, je traite les aspects clés des chaînes résonantes : leur formation, leur évolution et leur stabilité. Premièrement, j’introduis les idées modernes en théorie de formation planétaire, et les méthodes utilisées dans la thèse : la mécanique Hamiltonienne, le problème planétaire et la théorie perturbative. Deuxièmement, je présente le processus de capture en résonance de moyen mouvement du premier ordre k : k − 1 par migration convergente des planètes, avec une nouvelle description analytique de l’évolution planétaire qui en suit, et je décris la dynamique résonante dans le plan orbital commun. La description analytique est confirmée par des intégrations N-corps qui incluent les interactions disque-planète. Ensuite, je me base sur des résultats existants concernant l’évolution dissipative de deux planètes en résonance qui engendre la divergence de leurs demi-grands axes. Par une approche similaire, je présente une méthode statistique qui permet de déterminer dans quelle mesure l’architecture observée d’un système de trois planètes est compatible avec une histoire dynamique résonante dissipative. Je considère par la suite la stabilité des chaînes résonantes. Des études antérieures ont montré que l’absence de systèmes exoplanétaires résonants n’est pas en contradiction avec le modèle de capture en résonance par migration dans le disque, si une phase d’instabilité est très commune après la disparition du disque. On observe un taux d’instabilité plus élevé dans les systèmes synthétiques plus compacts et peuplés par des planètes plus massives. Des simulations N-corps dédiées à l’étude de la stabilité des chaînes résonantes ont montré qu’il y a une masse planétaire maximale qui garantit la stabilité ; cette masse limite diminue si les planètes sont plus massives et/ou si la chaîne résonante est plus compacte. J’étudie la stabilité des chaînes résonantes de planètes en fonction de leur masse commune, et j’examine de façon analytique et numérique des cas spécifiques de systèmes comprenant deux ou trois planètes. Je découvre un mécanisme dynamique qui peut déclencher une excitation du système, et qui mène à une phase de rencontres proches et collisions. Ce mécanisme se généralise à différents nombres de planètes et/ou à des chaînes résonantes plus ou moins compactes, et donne une prédiction analytique de la masse critique qui est en accord qualitatif avec les expériences numériques mentionnées précédemment. Enfin, je décris un scénario dynamique qui peut expliquer la pollution des naines blanches en éléments lourds. Les systèmes planétaires compacts peuvent devenir instables pendant la phase de perte de masse qui marque la fin de l’évolution stellaire, et les impacts entre planètes génèrent des débris. En m’appuyant sur des résultats précédents, je montre que l’excentricité orbitale des débris qui résident en résonance de moyen mouvement avec une planète externe peut devenir suffisamment élevée pour que les débris soient engloutis par l’étoile, ce qui peut expliquer la pollution observée. / Observations of hundreds of exoplanetary systems have produced a huge sample of orbital configurations, and the orbital periods are one of their better constrained and most astonishing properties. A common type of exoplanets are the Super-Earths, which have a mass between 1 and 20 Earth masses and a typical period of less than 100 days. The period ratio distribution of these planets poses a challenge to astrophysicists: during their formation, still embedded in the protoplanetary disc, we expect them to form chains of mean motion resonances, where the period ratio of neighbouring planets is close to a low-integer ratio. However, most Super-Earth systems are not close to resonance. In this thesis, I discuss key dynamical aspects of resonant chains: their formation, their evolution and their stability. I first give an overview of our current understanding of planetary formation, and an introduction of the methods used in the thesis: the tools of Hamiltonian dynamics, the planetary problem and perturbation theory. Then, I present the process of capture of planets migrating in protoplanetary discs into first order k : k − 1 mean motion resonances, including a novel analytical description of the corresponding planetary evolution, and I describe the relevant aspects of resonant dynamics in the planar approximation. The analytical treatment is supported by numerical N-body simulations which include the planet-disc interactions. Next, I expand on previous results on two-planet dissipative evolution in mean motion resonance and the resulting divergence of the planets’ semi-major axes. With a similar approach, I present a statistical method which allows to determine to what extent the observed architecture of a three-planet system is compatible with a dissipative resonant dynamical history. I then address the main problem of the stability of resonant chains. Previous works have shown that the over-all lack of resonances in the exoplanet sample is not in contradiction with resonant capture, if a post-disc phase of planetary instabilities is extremely common. Higher rates of instabilities are observed in synthetic systems where planets are most massive and the configurations most compact. Specific N-body experiments on the stability of resonant chains found that there is a critical planetary mass allowed for stability, which decreases with increasing number of planets and/or increasing value of k in the chain. The origin of these instabilities was however not discussed. I study the stability of resonant chains of equal-mass planets in terms of their mass, investigating analytically and numerically specific cases of two- and threeplanet systems. I find a dynamical mechanism which can trigger an excitation of the system, leading to mutual close-encounters and collisions. This can be generalised to an arbitrary number of planets and/or value of k in the resonant chain, and gives an analytical prediction for the critical mass allowed for stability which agrees qualitatively with the aforementioned numerical experiments. Finally, I describe a dynamical scenario that can explain the pollution of White Dwarfs with heavy elements. The idea is that compact planetary systems become unstable during the mass-loss phase characterising the end of the stellar evolution, so that impacts among planets lead to the generation of collisional debris. Expanding on previous works, I show that debris residing in mean motion resonance with an outer planetary perturber can have their orbital eccentricity excited to largeenough values to be engulfed by the host star, causing the observed pollution.
|
20 |
Le problème mathématique des trois corps, abordé simultanément sous l'angle de la recherche théorique et celui de la diffusion auprès de publics variés / The mathematical three body problem, simultaneoulsy addressed through theoretical research, and through popularization toward various publicsLhuissier, Marie 21 November 2018 (has links)
Cette thèse contient deux parties distinctes, reliées par le thème de l’étude géométrique du problème à trois corps. La première partie présente un point de vue sur les enjeux et les perspectives liés à la diffusion des mathématiques, et illustre ce point de vue à l’aide de deux projets de diffusion « grand public » : une exposition virtuelle autour de la mécanique céleste et du problème à trois corps, et un duo de contes mathématiques pour enfants, l’un sur la forme de la lune, et l’autre sur l’enlacement de courbes fermées. La présentation de ces projets est suivie d’une analyse a priori et d’une étude des observations recueillies lors de différentes expérimentations auprès de publics variés. La deuxième partie est consacrée à l’étude – théorique et numérique – de l’enlacement des trajectoires de quelques systèmes dynamiques sur la 3-sphère, et en particulier de certaines instances du problème à trois corps. On y présente d’abord le problème à trois corps restreint, plan, circulaire, en s’intéressant tout particulièrement au cas où une des deux primaires disparait. On se ramène ainsi à un flot sur la 3-shpère dont on connaît explicitement des sections de Birkhoff en disque ou en anneau, et on met en lumière des éléments qui tendent à montrer le caractère lévogyre de ce flot. On explore ensuite, à l’aide de simulations numériques, la possibilité que le système reste lévogyre sur un domaine assez éloigné de ce cas dégénéré. Enfin, on s’intéresse aux flots sur la 3-sphère qui admettent une section de Birkhoff en disque et on traduit la notion d’enlacement de mesures invariantes pour le flot en termes d’enroulement de mesures invariantes pour le difféomorphisme de premier retour. / This thesis contains two distinct parts, connected by the subject of the geometric study of the three body problem.The first part presents a point of view about the stakes and prospects of the popularization of mathematics, and it illustrates this point of view with two projects of popularization for a general public : a virtual exhibition about celestial mechanics and the three body problem, and a pair of mathematical tales for children, one about the shape of the moon, and the other about the linking number of two closed curves. The presentation of these projects is followed by an initial analysis and by a study of the observations collected during different experimentations towards various publics. The second part is devoted to the theoretical and computational study of the linking number of trajectories from a few dynamical systems on the 3-sphere, and in particular from some cases of the restricted three body problem. We first present the planar, circular, restricted three body problem, with a particular attention to the case where one of the two heavy bodies vanishes. We thus restrict ourselves to a flow on the 3-shpere for which disk-like or annular-like Birkhoff sections are explicitely known, and we bring to light evidences of the right-handedness of this flow. Then we investigate, with the help of computer simulations, the possibility for the system to stay right-handed over a domain rather distant from this degenerate case. Finally, we consider the flows on the 3-sphere which admit a disk-like Birkhoff section, and we translate the notion of linking for measures that are invariant by a flow into the notion of winding for measures that are invariant by the first return map on the disk.
|
Page generated in 0.0891 seconds