Spelling suggestions: "subject:"mécanismes catalytique""
11 |
Étude structure-fonction des fructose-1,6-bisphosphate aldolases métallo-dépendantes : mécanisme catalytique et développement d’antimicrobiensCoinçon, Mathieu 09 1900 (has links)
Les fructose-1,6-bisphosphate aldolases (FBPA) sont des enzymes glycolytiques (EC 4.1.2.13) qui catalysent la transformation réversible du fructose-1,6-bisphosphate (FBP) en deux trioses-phosphates, le glycéraldéhyde-3-phosphate (G3P) et le dihydroxyacétone phosphate (DHAP). Il existe deux classes de FBPA qui diffèrent au niveau de leur mécanisme catalytique. Les classes I passent par la formation d’un intermédiaire covalent de type iminium alors que les classes II, métallodépendantes, utilisent généralement un zinc catalytique. Contrairement au mécanisme des classes I qui a été très étudié, de nombreuses interrogations subsistent au sujet de celui des classes II. Nous avons donc entrepris une analyse détaillée de leur mécanisme réactionnel en nous basant principalement sur la résolution de structures cristallographiques. De nombreux complexes à haute résolution furent obtenus et ont permis de détailler le rôle de plusieurs résidus du site actif de l’enzyme. Nous avons ainsi corrigé l’identification du résidu responsable de l’abstraction du proton de l’O4 du FBP, une étape cruciale du mécanisme. Ce rôle, faussement attribué à l’Asp82 (chez Helicobacter pylori), est en fait rempli par l’His180, un des résidus coordonant le zinc. L’Asp82 n’en demeure pas moins essentiel car il oriente, active et stabilise les substrats. Enfin, notre étude met en évidence le caractère dynamique de notre enzyme dont la catalyse nécessite la relocalisation du zinc et de nombreux résidus.
La dynamique de la protéine ne permet pas d’étudier tous les aspects du mécanisme uniquement par l’approche cristallographique. En particulier, le résidu effectuant le transfert stéréospécifique du proton pro(S) sur le carbone 3 (C3) du DHAP est situé sur une boucle qui n’est visible dans aucune de nos structures. Nous avons donc développé un protocole de dynamique moléculaire afin d’étudier sa dynamique. Validé par l’étude d’inhibiteurs de la classe I, l’application de notre protocole aux FBPA de classe II a confirmé l’identification du résidu responsable de cette abstraction chez Escherichia coli (Glu182) mais pointe vers un résidu diffèrent chez H. pylori (Glu149 au lieu de Glu142). Nos validations expérimentales confirment ces observations et seront consolidées dans le futur.
Les FBPA de classe II sont absentes du protéome humain mais sont retrouvées chez de nombreux pathogènes, pouvant même s'y révéler essentielles. Elles apparaissent donc comme étant une cible idéale pour le développement de nouveaux agents anti-microbiens. L’obtention de nouveaux analogues des substrats pour ces enzymes a donc un double intérêt, obtenir de nouveaux outils d’étude du mécanisme mais aussi développer des molécules à visée pharmacologique. En collaboration avec un groupe de chimistes, nous avons optimisé le seul inhibiteur connu des FBPA de classe II. Les composés obtenus, à la fois plus spécifiques et plus puissants, permettent d’envisager une utilisation pharmacologique.
En somme, c’est par l’utilisation de techniques complémentaires que de nouveaux détails moléculaires de la catalyse des FBPA de classe II ont pu être étudiés. Ces techniques permettront d’approfondir la compréhension fine du mécanisme catalytique de l’enzyme et offrent aussi de nouvelles perspectives thérapeutiques. / Fructose-1,6-bisphosphate aldolases (FBPA) are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) into the triose phosphates, glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). There are two classes of FBPAs that differ at the level of their mechanism. Class I FBPAs form a covalent iminium intermediate whereas class II FBPAs, being metalloenzymes, generally use a catalytic zinc in their reaction mechanism. In contrast to the mechanism of the class I FBPAs, which has been thoroughly studied, there are several unresolved inquiries as to the mechanism of class II FBPAs. We have therefore pursued a detailed analysis of the reaction mechanism using as a primary tool the elucidation of crystallographic structures. Several high resolution complexes have been resolved and have provided critical evidence to help us suggest the implication and role of several key residues in the active site. Consequently, we have correctly identified the residue which is responsible for the abstraction of the O4 proton from FBP, a vital step in the reaction mechanism. The residue responsible for this abstraction, which had incorrectly been assigned to Asp82 (in Helicobacter pylori), has been appropriately consigned to His180, a residue which is involved in coordinating the zinc molecule. Nevertheless, Asp82 remains an important residue as it orients, activates and stabilizes substrates. Finally, our study brings to evidence the dynamic character of our enzyme in which catalysis entails the relocalization of the catalytic zinc and several residues.
The complexity of this reaction, notably one of the proton exchanges in the mechanism, could not be resolved solely by crystallographic means. In fact, the residue responsible for the stereospecific transfer of the pro(S) proton on carbon 3 (C3) of DHAP is situated on a loop that was not resolved in any of our structures. We therefore developed a molecular dynamics approach to study this intricate movement. After preliminary validation by inhibitor studies with class I FBPAs, the protocol was applied to class II FBPAs and several remarkable observations emerged: the residue responsible for this abstraction in Escherichia coli is Glu182 whereas a different residue, Glu149 (instead of Glu142) appears to assume this role in H. pylori. Our preliminary validations have confirmed this observation and shall be further consolidated in the future.
Class II FBP aldolases, although absent from the human proteome, are prevalently found in several pathogens, and have further been found to be essential to a number of these organisms. As such, they are ideal targets for the development of novel anti-microbial agents. Developing new analogues of the cognate substrates of these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. In the context of a collaborative effort involving a group of chemists, a compound that initially had an inhibition constant in the millimolar range was optimized and produced a series of compounds that inhibit in the nanomolar range.
|
12 |
Multifonctionnalité de l'aldolase glycolytique : mécanisme catalytique et interaction avec un peptide de la protéine du syndrome Wiskott-AldrichSt-Jean, Miguel January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
13 |
Étude structure-fonction des fructose-1,6-bisphosphate aldolases métallo-dépendantes : mécanisme catalytique et développement d’antimicrobiensCoinçon, Mathieu 09 1900 (has links)
Les fructose-1,6-bisphosphate aldolases (FBPA) sont des enzymes glycolytiques (EC 4.1.2.13) qui catalysent la transformation réversible du fructose-1,6-bisphosphate (FBP) en deux trioses-phosphates, le glycéraldéhyde-3-phosphate (G3P) et le dihydroxyacétone phosphate (DHAP). Il existe deux classes de FBPA qui diffèrent au niveau de leur mécanisme catalytique. Les classes I passent par la formation d’un intermédiaire covalent de type iminium alors que les classes II, métallodépendantes, utilisent généralement un zinc catalytique. Contrairement au mécanisme des classes I qui a été très étudié, de nombreuses interrogations subsistent au sujet de celui des classes II. Nous avons donc entrepris une analyse détaillée de leur mécanisme réactionnel en nous basant principalement sur la résolution de structures cristallographiques. De nombreux complexes à haute résolution furent obtenus et ont permis de détailler le rôle de plusieurs résidus du site actif de l’enzyme. Nous avons ainsi corrigé l’identification du résidu responsable de l’abstraction du proton de l’O4 du FBP, une étape cruciale du mécanisme. Ce rôle, faussement attribué à l’Asp82 (chez Helicobacter pylori), est en fait rempli par l’His180, un des résidus coordonant le zinc. L’Asp82 n’en demeure pas moins essentiel car il oriente, active et stabilise les substrats. Enfin, notre étude met en évidence le caractère dynamique de notre enzyme dont la catalyse nécessite la relocalisation du zinc et de nombreux résidus.
La dynamique de la protéine ne permet pas d’étudier tous les aspects du mécanisme uniquement par l’approche cristallographique. En particulier, le résidu effectuant le transfert stéréospécifique du proton pro(S) sur le carbone 3 (C3) du DHAP est situé sur une boucle qui n’est visible dans aucune de nos structures. Nous avons donc développé un protocole de dynamique moléculaire afin d’étudier sa dynamique. Validé par l’étude d’inhibiteurs de la classe I, l’application de notre protocole aux FBPA de classe II a confirmé l’identification du résidu responsable de cette abstraction chez Escherichia coli (Glu182) mais pointe vers un résidu diffèrent chez H. pylori (Glu149 au lieu de Glu142). Nos validations expérimentales confirment ces observations et seront consolidées dans le futur.
Les FBPA de classe II sont absentes du protéome humain mais sont retrouvées chez de nombreux pathogènes, pouvant même s'y révéler essentielles. Elles apparaissent donc comme étant une cible idéale pour le développement de nouveaux agents anti-microbiens. L’obtention de nouveaux analogues des substrats pour ces enzymes a donc un double intérêt, obtenir de nouveaux outils d’étude du mécanisme mais aussi développer des molécules à visée pharmacologique. En collaboration avec un groupe de chimistes, nous avons optimisé le seul inhibiteur connu des FBPA de classe II. Les composés obtenus, à la fois plus spécifiques et plus puissants, permettent d’envisager une utilisation pharmacologique.
En somme, c’est par l’utilisation de techniques complémentaires que de nouveaux détails moléculaires de la catalyse des FBPA de classe II ont pu être étudiés. Ces techniques permettront d’approfondir la compréhension fine du mécanisme catalytique de l’enzyme et offrent aussi de nouvelles perspectives thérapeutiques. / Fructose-1,6-bisphosphate aldolases (FBPA) are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) into the triose phosphates, glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). There are two classes of FBPAs that differ at the level of their mechanism. Class I FBPAs form a covalent iminium intermediate whereas class II FBPAs, being metalloenzymes, generally use a catalytic zinc in their reaction mechanism. In contrast to the mechanism of the class I FBPAs, which has been thoroughly studied, there are several unresolved inquiries as to the mechanism of class II FBPAs. We have therefore pursued a detailed analysis of the reaction mechanism using as a primary tool the elucidation of crystallographic structures. Several high resolution complexes have been resolved and have provided critical evidence to help us suggest the implication and role of several key residues in the active site. Consequently, we have correctly identified the residue which is responsible for the abstraction of the O4 proton from FBP, a vital step in the reaction mechanism. The residue responsible for this abstraction, which had incorrectly been assigned to Asp82 (in Helicobacter pylori), has been appropriately consigned to His180, a residue which is involved in coordinating the zinc molecule. Nevertheless, Asp82 remains an important residue as it orients, activates and stabilizes substrates. Finally, our study brings to evidence the dynamic character of our enzyme in which catalysis entails the relocalization of the catalytic zinc and several residues.
The complexity of this reaction, notably one of the proton exchanges in the mechanism, could not be resolved solely by crystallographic means. In fact, the residue responsible for the stereospecific transfer of the pro(S) proton on carbon 3 (C3) of DHAP is situated on a loop that was not resolved in any of our structures. We therefore developed a molecular dynamics approach to study this intricate movement. After preliminary validation by inhibitor studies with class I FBPAs, the protocol was applied to class II FBPAs and several remarkable observations emerged: the residue responsible for this abstraction in Escherichia coli is Glu182 whereas a different residue, Glu149 (instead of Glu142) appears to assume this role in H. pylori. Our preliminary validations have confirmed this observation and shall be further consolidated in the future.
Class II FBP aldolases, although absent from the human proteome, are prevalently found in several pathogens, and have further been found to be essential to a number of these organisms. As such, they are ideal targets for the development of novel anti-microbial agents. Developing new analogues of the cognate substrates of these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. In the context of a collaborative effort involving a group of chemists, a compound that initially had an inhibition constant in the millimolar range was optimized and produced a series of compounds that inhibit in the nanomolar range.
|
14 |
Multifonctionnalité de l'aldolase glycolytique : mécanisme catalytique et interaction avec un peptide de la protéine du syndrome Wiskott-AldrichSt-Jean, Miguel January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
15 |
Structure-function studies of class I aldolases - exploring novel activities : mechanism, moonlighting, and inhibitionHeron, Paul 12 1900 (has links)
La fructose-1,6-bisphosphate aldolase de classe I est une enzyme glycolytique (EC 4.1.2.13) qui catalyse le clivage réversible du fructose-1,6-bisphosphate (FBP) en dihydroxyacétone phosphate (DHAP) et glycéraldéhyde-3-phosphate (G3P). Des années de recherche sur FBP aldolase ont permis d’identifier les résidus impliqués dans son mécanisme réactionnel, ont tracé en grande partie les coordonnées de la réaction, ont révélé de nouvelles fonctions dites « moonlighting », et ont validé l’aldolase comme une cible attrayante pour des applications anti-glycolytiques tel que le cancer. Il existe néanmoins des questions en suspens relatives à ces activités que nous avons étudiées.
Tout d'abord, la trajectoire détaillée de l'aldéhyde relatif à sa liaison au site actif allant jusqu’à la formation du lien carbone-carbone par condensation aldolique est indéfini. Pour élucider les détails moléculaires liés à ces événements, nous avons déterminé des structures cristallographiques à hautes résolution de l’aldolase de classe I chez Toxoplasma gondii, qui porte une identité de séquence élevée avec l’aldolase humaine (57%), en complexe avec l’intermédiaire ternaire de pré-condensation. Le complexe ternaire révèle un mode de liaison non-productive inhabituel pour G3P dans une configuration cis qui permet l’alignement de l'aldéhyde à proximité du nucléophile naissant. La configuration compétente pour la condensation aldolique provient d'une transposition cis-trans de l'aldéhyde qui produit une liaison hydrogène courte permettant la polarisation de l'aldéhyde et le transfert de proton au niveau de Glu-189. Nos résultats informent les chimistes synthétiques qui cherchent à développer l’aldolase comme biocatalyseur pour des réactions stéréo-contrôlées.
Le rôle présumé de l’aldolase dans la production du méthyglyoxal (MGO), un métabolite dicarbonyle hautement réactif qui génère des « advanced glycation end products » (AGES) a également été étudié structurellement et enzymatiquement. Une enquête structurelle cristallographique de MGO générée par décomposition enzymatique chez l’aldolase de classe I a révélé que, contrairement aux indications préliminaires, l'apparition hypothétique de MGO et de phosphate inorganique (Pi) résultant de la décomposition enzymatique de DHAP dans le site actif de l’aldolase est mieux interprétée par une population mixte de DHAP et de molécules d'eau. Une étude enzymatique a révélé que la décomposition spontannée des trioses-phosphate est une source majeure de la production de MGO, alors qu’une production catalysée par l’aldolase est peu concluante. L’identification des sources de production de MGO continue d'être une priorité afin de développer des stratégies pour atténuer les manifestations cliniques de pathologies associées au MGO.
La FBP aldolase est également reconnu pour ses activités « moonlighting » - du fait qu’elle effectue plus d'une activité sans rapport avec sa fonction glycolytique. Divers partenaires de l’aldolase sont rapportés dans la littérature, y compris les adhésines de surface cellulaire chez les parasites apicomplexes, dans lequel l’aldolase exécute une fonction d'échafaudage entre le complexe actomyosine et les adhésines - une interaction qui est décisive pour la motilité et l'invasion des cellules hôte. Le mode de liaison de cette interaction a été étudié et nos résultats sont compatibles avec une liaison au site actif. Les détails précis de cette interaction ont des implications thérapeutiques, étant donné que le ciblage de celui-ci réduit l'invasion des cellules hôte par les parasites.
Enfin, l’aldolase de classe I est de plus en plus reconnu pour son potentiel comme cible anti-glycolytique dans les cellules qui sont fortement tributaires du flux glycolytique, comme les cellules cancéreuses et les parasites protozoaires. Le développement de nouveaux inhibiteurs de haute affinité est donc non seulement avantageux pour des études mécanistiques, mais représente un potentiel pharmacologique sans fin. Nous avons développé une nouvelle classe d’inhibiteurs de haute affinité de type inhibition lente et avons déterminé la base moléculaire de leur inhibition grâce à des structures cristallographiques à haute résolution et par un profilage enzymatique.
Cette étude, qui combine plusieurs disciplines, y compris la cristallographie, enzymologie et chimie organique, souligne l'intérêt et l'importance d'une approche multidisciplinaire. / Class I Fructose-1,6-bisphosphate aldolases are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). Years of research on FBP aldolases has identified residues implicated in the reaction mechanism, mapped the greater part of the reaction coordinates, and revealed novel moonlighting functions. Further, FBP aldolase is recognized as an attractive target for anti-glycolytic applications such as cancer. There are nevertheless outstanding questions related to these activities that were investigated in this thesis.
First, the detailed trajectory of the reaction mechanism from aldehyde binding in the active site to carbon-carbon bond formation by aldol condensation is undefined. To elucidate the molecular details related to these events, we solved high-resolution crystallographic structures of native class I aldolase from Toxoplasma gondii, which has a high sequence identity with human aldolase (57 %), in complex with the pre-condensation ternary intermediate. The ternary complex reveals a condensation-incompetent binding mode for G3P in a cis-configuration that aligns the aldehyde alongside the nascent nucleophile. The productive aldol-competent configuration arises from a cis-trans rearrangement of the aldehyde that produces a short hydrogen bond required for polarization of the aldehyde and coincident proton transfer at Glu-189. Our results inform synthetic chemists seeking to develop aldolases for stereo-controlled reactions in biosynthetic applications.
The suspected role of aldolase in methylglyoxal (MGO) production, a highly reactive dicarbonyl metabolite that produces advanced glycation end-products (AGES) was also probed structurally and enzymatically. A crystallographic structural investigation of MGO generated by enzymatic decomposition in class I aldolase revealed that, contrary to preliminary indications, the appearance of MGO and inorganic phosphate (Pi) resulting from enzymatic decomposition of DHAP in the active site of aldolase is more appropriately modeled by a mixed population of DHAP and water molecules. Enzymatic investigation revealed triose-phosphate decomposition to be a major source of MGO production, whereas production by aldolase did not exceed assay background levels. Identifying the main sources of MGO production continues to be a priority for mitigating the clinical manifestations of MGO-derived pathologies.
FBP aldolase is also recognized for its moonlighting properties – performing more than one activity unrelated to the glycolytic function. Diverse aldolase partners are reported, including cell surface adhesins in apicomplexan parasites, in which aldolase performs a bridging function between the actomyosin complex and the cytoplasmic domain of the adhesins – an interaction that is crucial for motility and host-cell invasion. The binding mode of this interaction was investigated and our results are consistent with active site binding. The precise details of aldolase-adhesin binding has therapeutic implications, since targeting of the latter reduces host-cell invasion by parasites.
Finally, class I aldolase is gaining prominence as an anti-glycolytic target in cells that are highly dependent on glycolytic flux, such as cancer cells and protozoan parasites. Developing new high-affinity inhibitors for these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. We developed a novel class of high-affinity aldolase inhibitors, bisphosphonates, and determined the molecular basis of their inhibition with high-resolution crystallographic structures and enzymatic profiling.
This study, which combined several disciplines, including crystallography, enzymology, and organic chemistry, underscores the interest and significance of a multidisciplinary approach.
|
16 |
Biosynthèse des flavan-3-ols chez Vitis vinifera : structure, mécanisme catalytique et première approche cinétique de la leucoanthocyanidine réductaseMauge, Chloé 01 July 2010 (has links)
Les flavan-3-ols et leurs polymères, les proanthocyanidines, appartiennent à une famille de flavonoïdes appelée les tannins condensés. Ces composés polyphénoliques jouent un rôle essentiel dans la qualité phytosanitaire des baies de raisin ainsi que dans les propriétés organoleptiques du vin (flaveur, astringence et couleur). La connaissance des mécanismes qui régissent leur biosynthèse est donc primordiale afin de mieux comprendre la mise en place de la typicité d’un vin. Ce mémoire est consacré à l’étude de l’une des enzymes responsables de la synthèse des flavan-3-ols : la leucoanthocyanidine réductase 1 de Vitis vinifera (VvLAR1). Dans une première partie, nous décrivons les conditions d’expression, de purification et de stabilité de l’enzyme recombinante. L’activité enzymatique est démontrée et la configuration 2R,3S des produits réactionnels caractérisée. La seconde partie de ce manuscrit décrit l’étude structurale de l’enzyme. Des monocristaux d’apoenzyme, de complexes binaires (VvLAR1 / NADPH) et d’un complexe ternaire (VvLAR1 / NADPH / (+)-catéchine) ont été obtenus. Les différentes structures permettent de décrire les modifications structurales associées à la fixation du coenzyme puis du produit. Un mécanisme catalytique basé sur les interactions intermoléculaires observées au sein du complexe ternaire est proposé. La troisième partie de ce mémoire est consacrée à la recherche de conditions expérimentales permettant la production et la stabilisation de la leucocyanidine en solution, un des substrats naturels de l’enzyme. Les résultats obtenus permettent une première approche de l’étude des propriétés cinétiques de la VvLAR1. / Flavan-3-ols and their polymerisation products, proanthocyanidins, belong to a flavonoid family named condensed tannins. These polyphenolic compounds play a major role in the protection of grape berries to intruders and in the organoleptic properties of wine (flavour, astringency and colour). Knowledge of the mechanisms which govern their biosynthesis is thus essential to better understand wine typical composition. The present thesis is devoted to the investigation of one of the two enzymes which catalyse the flavan-3-ols formation: leucoanthocyanidin reductase 1 from Vitis vinifera (VvLAR1). In the first part of the manuscript, we describe the expression, purification and stability conditions of the recombinant enzyme. The enzyme activity is demonstrated and the reaction product 2R,3S configuration is characterised. The second part of this report describes the structural studies of the enzyme. Monocrystals of the apoenzyme and of binaries (VvLAR1 / NADPH) and a ternary (VvLAR1 / NADPH / (+)-catechin) complexes were obtained. These different structures allow the description of the structural changes associated with the coenzyme and then the substrate binding. A catalytic mechanism, based on the intermolecular interactions within the ternary complex, is proposed. The last part of the work is devoted to the investigation of the experimental conditions leading to the stability of leucocyanidin in solution, one of the natural substrates of the enzyme. The results obtained allow a first study of the VvLAR1 kinetic properties.
|
Page generated in 0.0799 seconds