1 |
An approach for online learning in the presence of concept changes / Une approche pour l'apprentissage en-ligne en présence de changements de concept.Jaber, Ghazal 18 October 2013 (has links)
De nombreuses applications de flux de données ont vu le jour au cours des dernières années. Lorsque l'environnement évolue, il est nécessaire de s'appuyer sur un apprentissage en ligne pouvant s'adapter aux conditions changeantes, alias dérives de concept. L'adaptation aux dérives de concept implique d'oublier une partie ou la totalité des connaissances acquises lorsque le concept change, tout en accumulant des connaissances sur le concept sous-jacent supposé stationnaire. Ce compromis est appelé le dilemme stabilité-plasticité.Les méthodes d'ensemble ont été parmi les approches les plus réussies. Cependant, la gestion de l'ensemble qui détermine les informations à oublier n'a pas été complètement étudiée jusqu'ici. Notre travail montre l'importance de la stratégie de l'oubli en comparant plusieurs approches. Les résultats ainsi obtenus nous amènent à proposer une nouvelle méthode d'ensemble avec une stratégie d'oubli conçue pour s'adapter aux dérives de concept. Des évaluations empiriques montrent que notre méthode se compare favorablement aux systèmes adaptatifs de l'état de l'art.Les majorité des anciens travaux réalisés se sont focalisés sur la détection des changements de concept, ainsi que les méthodes permettant d'adapter le système d'apprentissage aux changements. Dans ce travail, nous allons plus loin en introduisant un mécanisme d'anticipation capable de détecter des états pertinents de l'environnement, de reconnaître les contextes récurrents et d'anticiper les changements de concept susceptibles.Par conséquent, la méthode que nous proposons traite à la fois le défi d'optimiser le dilemme stabilité-plasticité, l'anticipation et la reconnaissance des futurs concepts. Ceci est accompli grâce à une méthode d'ensemble qui contrôle un comité d'apprenants. D'une part, la gestion de l'ensemble permet de s'adapter naturellement à la dynamique des changements de concept avec peu de paramètres à régler. D'autre part, un mécanisme d'apprentissage surveillant les changements dans l'ensemble fournit des moyens pour anticiper la modification sous-jacente du contexte. / Learning from data streams is emerging as an important application area. When the environment changes, it is necessary to rely on on-line learning with the capability to adapt to changing conditions a.k.a. concept drifts. Adapting to concept drifts entails forgetting some or all of the old acquired knowledge when the concept changes while accumulating knowledge regarding the supposedly stationary underlying concept. This tradeoff is called the stability-plasticity dilemma. Ensemble methods have been among the most successful approaches. However, the management of the ensemble which ultimately controls how past data is forgotten has not been thoroughly investigated so far. Our work shows the importance of the forgetting strategy by comparing several approaches. The results thus obtained lead us to propose a new ensemble method with an enhanced forgetting strategy to adapt to concept drifts. Experimental comparisons show that our method compares favorably with the well-known state-of-the-art systems. The majority of previous works focused only on means to detect changes and to adapt to them. In our work, we go one step further by introducing a meta-learning mechanism that is able to detect relevant states of the environment, to recognize recurring contexts and to anticipate likely concepts changes. Hence, the method we suggest, deals with both the challenge of optimizing the stability-plasticity dilemma and with the anticipation and recognition of incoming concepts. This is accomplished through an ensemble method that controls a ensemble of incremental learners. The management of the ensemble of learners enables one to naturally adapt to the dynamics of the concept changes with very few parameters to set, while a learning mechanism managing the changes in the ensemble provides means for the anticipation of, and the quick adaptation to, the underlying modification of the context.
|
2 |
Exploitation des observations satellitaires IASI couplées à un modèle régional pour l'amélioration de la prévision des épisodes de pollution en ozoneBoynard, Anne 04 December 2009 (has links) (PDF)
Les observations satellitaires contribuent désormais à la surveillance de la composition troposphérique et à la prévision de la qualité de l'air, en fournissant une information quantitative sur l'ozone et ses précurseurs. L'objectif de ces travaux de thèse a été d'exploiter le couplage entre les observations satellitaires IASI, qui a été lancé à bord du satellite MetOp en octobre 2006, et le modèle CHIMERE, afin de documenter l'amélioration de la prévision de la qualité de l'air. Ces travaux s'appuient d'abord sur l'inversion des concentrations d'ozone à partir des spectres infrarouges mesurés par l'instrument IASI pour restituer des colonnes totales d'ozone et des colonnes partielles d'ozone notamment dans la troposphère. Ces mesures ont été validées par des observations indépendantes : les colonnes totales sont comparées à des mesures ultra-violettes fournies par l'instrument satellitaire GOME-2 (également à bord du satellite MetOp) et les instruments au sol du réseau Brewer-Dobson mais également des mesures infrarouges (TES et AIRS). Les colonnes partielles sont, elles, comparées à des mesures de ballons sonde. Un autre volet de mes travaux de thèse consiste à préparer l'assimilation des données IASI dans le modèle CHIMERE, en utilisant un Filtre de Kalman d'Ensemble. Cette méthode permet d'établir les covariances des erreurs du modèle à partir d'un ensemble de différentes configurations du modèle. Dans ce contexte, un travail sur la construction d'un ensemble reflétant au mieux la réalité a été entrepris. La qualité de l'ensemble a été évaluée, dans la dimension verticale et en surface, à partir de différents outils, qui reposent tous sur des comparaisons aux observations.
|
3 |
Modélisation et analyse de la marée interne dans le golfe de GascognePairaud, Ivane 18 November 2005 (has links) (PDF)
L'interaction des courants de marée barotrope avec les talus continentaux est à l'origine de la génération d'ondes internes. D'importants transferts d'énergie et du mélange y sont associés, permettant le maintien de la circulation océanique générale. La modélisation des marées internes de grande amplitude du golfe de Gascogne de la campagne MINT94 du SHOM est réalisée à l'aide du modèle 3D côtier SYMPHONIE. Les propriétés de génération et de propagation des marées internes semi-diurnes et quart-diurnes, l'origine des ondes non-linéaires, sont présentées suite au développement de l'outil d'analyse WEof (Wavelet Empirical orthogonal function). Il combine analyse en ondelettes (localisation temps-fréquence) et analyse en composantes principales (identification des structures physiques cohérentes). Des études de sensibilité sont présentées indiquant l'influence sur la marée interne des contributions suivantes: forçage par la marée barotrope, bathymétrie et stratification thermohaline.
|
4 |
A contribution to topological learning and its application in Social Networks / Une contribution à l'apprentissage topologique et son application dans les réseaux sociauxEzzeddine, Diala 01 October 2014 (has links)
L'Apprentissage Supervisé est un domaine populaire de l'Apprentissage Automatique en progrès constant depuis plusieurs années. De nombreuses techniques ont été développées pour résoudre le problème de classification, mais, dans la plupart des cas, ces méthodes se basent sur la présence et le nombre de points d'une classe donnée dans des zones de l'espace que doit définir le classifieur. Á cause de cela la construction de ce classifieur est dépendante de la densité du nuage de points des données de départ. Dans cette thèse, nous montrons qu'utiliser la topologie des données peut être une bonne alternative lors de la construction des classifieurs. Pour cela, nous proposons d'utiliser les graphes topologiques comme le Graphe de Gabriel (GG) ou le Graphes des Voisins Relatifs (RNG). Ces dernier représentent la topologie de données car ils sont basées sur la notion de voisinages et ne sont pas dépendant de la densité. Pour appliquer ce concept, nous créons une nouvelle méthode appelée Classification aléatoire par Voisinages (Random Neighborhood Classification (RNC)). Cette méthode utilise des graphes topologiques pour construire des classifieurs. De plus, comme une Méthodes Ensemble (EM), elle utilise plusieurs classifieurs pour extraire toutes les informations pertinentes des données. Les EM sont bien connues dans l'Apprentissage Automatique. Elles génèrent de nombreux classifieurs à partir des données, puis agrègent ces classifieurs en un seul. Le classifieur global obtenu est reconnu pour être très eficace, ce qui a été montré dans de nombreuses études. Cela est possible car il s'appuie sur des informations obtenues auprès de chaque classifieur qui le compose. Nous avons comparé RNC à d'autres méthodes de classification supervisées connues sur des données issues du référentiel UCI Irvine. Nous constatons que RNC fonctionne bien par rapport aux meilleurs d'entre elles, telles que les Forêts Aléatoires (RF) et Support Vector Machines (SVM). La plupart du temps, RNC se classe parmi les trois premières méthodes en terme d'eficacité. Ce résultat nous a encouragé à étudier RNC sur des données réelles comme les tweets. Twitter est un réseau social de micro-blogging. Il est particulièrement utile pour étudier l'opinion à propos de l'actualité et sur tout sujet, en particulier la politique. Cependant, l'extraction de l'opinion politique depuis Twitter pose des défis particuliers. En effet, la taille des messages, le niveau de langage utilisé et ambiguïté des messages rend très diffcile d'utiliser les outils classiques d'analyse de texte basés sur des calculs de fréquence de mots ou des analyses en profondeur de phrases. C'est cela qui a motivé cette étude. Nous proposons d'étudier les couples auteur/sujet pour classer le tweet en fonction de l'opinion de son auteur à propos d'un politicien (un sujet du tweet). Nous proposons une procédure qui porte sur l'identification de ces opinions. Nous pensons que les tweets expriment rarement une opinion objective sur telle ou telle action d'un homme politique mais plus souvent une conviction profonde de son auteur à propos d'un mouvement politique. Détecter l'opinion de quelques auteurs nous permet ensuite d'utiliser la similitude dans les termes employés par les autres pour retrouver ces convictions à plus grande échelle. Cette procédure à 2 étapes, tout d'abord identifier l'opinion de quelques couples de manière semi-automatique afin de constituer un référentiel, puis ensuite d'utiliser l'ensemble des tweets d'un couple (tous les tweets d'un auteur mentionnant un politicien) pour les comparer avec ceux du référentiel. L'Apprentissage Topologique semble être un domaine très intéressant à étudier, en particulier pour résoudre les problèmes de classification...... / Supervised Learning is a popular field of Machine Learning that has made recent progress. In particular, many methods and procedures have been developed to solve the classification problem. Most classical methods in Supervised Learning use the density estimation of data to construct their classifiers.In this dissertation, we show that the topology of data can be a good alternative in constructing classifiers. We propose using topological graphs like Gabriel graphs (GG) and Relative Neighborhood Graphs (RNG) that can build the topology of data based on its neighborhood structure. To apply this concept, we create a new method called Random Neighborhood Classification (RNC).In this method, we use topological graphs to construct classifiers and then apply Ensemble Methods (EM) to get all relevant information from the data. EM is well known in Machine Learning, generates many classifiers from data and then aggregates these classifiers into one. Aggregate classifiers have been shown to be very efficient in many studies, because it leverages relevant and effective information from each generated classifier. We first compare RNC to other known classification methods using data from the UCI Irvine repository. We find that RNC works very well compared to very efficient methods such as Random Forests and Support Vector Machines. Most of the time, it ranks in the top three methods in efficiency. This result has encouraged us to study the efficiency of RNC on real data like tweets. Twitter, a microblogging Social Network, is especially useful to mine opinion on current affairs and topics that span the range of human interest, including politics. Mining political opinion from Twitter poses peculiar challenges such as the versatility of the authors when they express their political view, that motivate this study. We define a new attribute, called couple, that will be very helpful in the process to study the tweets opinion. A couple is an author that talk about a politician. We propose a new procedure that focuses on identifying the opinion on tweet using couples. We think that focusing on the couples's opinion expressed by several tweets can overcome the problems of analysing each single tweet. This approach can be useful to avoid the versatility, language ambiguity and many other artifacts that are easy to understand for a human being but not automatically for a machine.We use classical Machine Learning techniques like KNN, Random Forests (RF) and also our method RNC. We proceed in two steps : First, we build a reference set of classified couples using Naive Bayes. We also apply a second alternative method to Naive method, sampling plan procedure, to compare and evaluate the results of Naive method. Second, we evaluate the performance of this approach using proximity measures in order to use RNC, RF and KNN. The expirements used are based on real data of tweets from the French presidential election in 2012. The results show that this approach works well and that RNC performs very good in order to classify opinion in tweets.Topological Learning seems to be very intersting field to study, in particular to address the classification problem. Many concepts to get informations from topological graphs need to analyse like the ones described by Aupetit, M. in his work (2005). Our work show that Topological Learning can be an effective way to perform classification problem.
|
5 |
Contribution à l'analyse et à la détection automatique d'anomalies ECG dans le cas de l'ischémie myocardique / Contribution to analysis and automatic detection of ECG anomalies in case of myocardial ischemiaHadjem, Medina 29 March 2016 (has links)
Les récentes avancées dans le domaine de la miniaturisation des capteurs biomédicaux à ultra-faible consommation énergétique, permettent aujourd’hui la conception de systèmes de télésurveillance médicale, à la fois plus intelligents et moins invasifs. Ces capteurs sont capables de collecter des signaux vitaux tels que le rythme cardiaq ue, la température, la saturation en oxygène, la pression artérielle, l'ECG, l'EMG, etc., et de les transmettre sans fil à un smartphone ou un autre dispositif distant. Ces avancées sus-citées ont conduit une large communauté scientifique à s'intéresser à la conception de nouveaux systèmes d'analyse de données biomédicales, en particulier de l’électrocardiogramme (ECG). S’inscrivant dans cette thématique de recherche, la présente thèse s’intéresse principalement à l’analyse et à la détection automatique des maladies cardiaques coronariennes, en particulier l’ischémie myocardique et l’infarctus du myocarde (IDM). A cette fin, et compte tenu de la nature non stationnaire et fortement bruitée du signal ECG, le premier défi a été d'extraire les paramètres pertinents de l’ECG, sans altérer leurs caractéristiques essentielles. Cette problématique a déjà fait l’objet de plusieurs travaux et ne représente pas l’objectif principal de cette thèse. Néanmoins, étant un prérequis incontournable, elle a nécessité une étude et une compréhension de l'état de l'art afin de sélectionner la méthode la plus appropriée. En s'appuyant sur les paramètres ECG extraits, en particulier les paramètres relatifs au segment ST et à l'onde T, nous avons contribué dans cette thèse par deux approches d'analyse ECG : (1) Une première analyse réalisée au niveau de la série temporelle des paramètres ECG, son objectif est de détecter les élévations anormales du segment ST et de l'onde T, connues pour être un signe précoce d'une ischémie myocardique ou d’un IDM. (2) Une deuxième analyse réalisée au niveau des battements de l’ECG, dont l’objectif est la classification des anomalies du segment ST et de l’onde T en différentes catégories. Cette dernière approche est la plus utilisée dans la littérature, cependant, il est difficile d’interpréter les résultats des travaux existants en raison de l'absence d’une méthodologie standard de classification. Nous avons donc réalisé notre propre étude comparative des principales méthodes de classification utilisées dans la littérature, en prenant en compte diverses classes d'anomalies ST et T, plusieurs paramètres d'évaluation des performances ainsi que plusieurs dérivations du signal ECG. Afin d'aboutir à des résultats plus significatifs, nous avons également réalisé la même étude en prenant en compte la présence d'autres anomalies cardiaques fréquentes dans l’ECG (arythmies). Enfin, en nous basant sur les résultats de cette étude comparative, nous avons proposé une nouvelle approche de classification des anomalies ST-T en utilisant une combinaison de la technique du Boosting et du sous-échantillonnage aléatoire, notre objectif étant de trouver le meilleur compromis entre vrais-positifs et faux-positifs. / Recent advances in sensing and miniaturization of ultra-low power devices allow for more intelligent and wearable health monitoring sensor-based systems. The sensors are capable of collecting vital signs, such as heart rate, temperature, oxygen saturation, blood pressure, ECG, EMG, etc., and communicate wirelessly the collected data to a remote device and/or smartphone. Nowadays, these aforementioned advances have led a large research community to have interest in the design and development of new biomedical data analysis systems, particularly electrocardiogram (ECG) analysis systems. Aimed at contributing to this broad research area, we have mainly focused in this thesis on the automatic analysis and detection of coronary heart diseases, such as Ischemia and Myocardial Infarction (MI), that are well known to be the leading death causes worldwide. Toward this end, and because the ECG signals are deemed to be very noisy and not stationary, our challenge was first to extract the relevant parameters without losing their main features. This particular issue has been widely addressed in the literature and does not represent the main purpose of this thesis. However, as it is a prerequisite, it required us to understand the state of the art proposed methods and select the most suitable one for our work. Based on the ECG parameters extracted, particularly the ST segment and the T wave parameters, we have contributed with two different approaches to analyze the ECG records: (1) the first analysis is performed in the time series level, in order to detect abnormal elevations of the ST segment and the T wave, known to be an accurate predictor of ischemia or MI; (2) the second analysis is performed at the ECG beat level to automatically classify the ST segment and T wave anomalies within different categories. This latter approach is the most commonly used in the literature. However, lacking a performance comparison standard in the state of the art existing works, we have carried out our own comparison of the actual classification methods by taking into account diverse ST and T anomaly classes, several performance evaluation parameters, as well as several ECG signal leads. To obtain more realistic performances, we have also performed the same study in the presence of other frequent cardiac anomalies, such as arrhythmia. Based on this substantial comparative study, we have proposed a new classification approach of seven ST-T anomaly classes, by using a hybrid of the boosting and the random under sampling methods, our goal was ultimately to reach the best tradeoff between true-positives and false-positives.
|
6 |
Stochastic Combinatorial Optimization / Optimisation combinatoire stochastiqueCheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.
|
7 |
Classification Automatique d'Images, Application à l'Imagerie du Poumon ProfondDesir, Chesner 10 July 2013 (has links) (PDF)
Cette thèse porte sur la classification automatique d'images, appliquée aux images acquises par alvéoscopie, une nouvelle technique d'imagerie du poumon profond. L'objectif est la conception et le développement d'un système d'aide au diagnostic permettant d'aider le praticien à analyser ces images jamais vues auparavant. Nous avons élaboré, au travers de deux contributions, des méthodes performantes, génériques et robustes permettant de classer de façon satisfaisante les images de patients sains et pathologiques. Nous avons proposé un premier système complet de classification basé à la fois sur une caractérisation locale et riche du contenu des images, une approche de classification par méthodes d'ensemble d'arbres aléatoires et un mécanisme de pilotage du rejet de décision, fournissant à l'expert médical un moyen de renforcer la fiabilité du système. Face à la complexité des images alvéoscopiques et la difficulté de caractériser les cas pathologiques, contrairement aux cas sains, nous nous sommes orientés vers la classification one-class qui permet d'apprendre à partir des seules données des cas sains. Nous avons alors proposé une approche one-class tirant partie des mécanismes de combinaison et d'injection d'aléatoire des méthodes d'ensemble d'arbres de décision pour répondre aux difficultés rencontrées dans les approches standards, notamment la malédiction de la dimension. Les résultats obtenus montrent que notre méthode est performante, robuste à la dimension, compétitive et même meilleure comparée aux méthodes de l'état de l'art sur une grande variété de bases publiques. Elle s'est notamment avérée pertinente pour notre problématique médicale.
|
Page generated in 0.0558 seconds