Spelling suggestions: "subject:"desegregation""
11 |
Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques / Development of a 3D parallel Cellular Automaton-Finite Element (CAFE) model for grain structure prediction during solidification of metallic alloysCarozzani, Tommy 04 December 2012 (has links)
La formation de la structure de grains dans les métaux pendant la solidification est déterminante pour les propriétés mécaniques et électroniques des pièces coulées. En plus de la texture donnée au matériau, la germination et la croissance des grains sont liées en particulier avec la formation des phases thermodynamiques et les inhomogénéités en composition d'éléments d'alliage. La structure de grains est rarement modélisée à l'échelle macroscopique, d'autant plus que l'approximation 2D est très souvent injustifiée. Dans ces travaux, la germination et la croissance de chaque grain individuel sont suivies avec un modèle macroscopique 3D CAFE. La microstructure interne des grains n'est pas explicitement résolue. Pour valider les approximations faites sur cette microstructure, une comparaison directe avec un modèle microscopique "champ de phase" a été réalisée. Celle-ci a permis de valider les hypothèses de construction du modèle CAFE, de mettre en avant le lien entre données calculées par les modèles microscopiques et paramètres d'entrée des modèles à plus grande échelle, et les domaines de validité de chaque modèle. Dans un deuxième temps, un couplage avec la ségrégation chimique et les bases de données thermodynamiques a été mise en place et appliquée sur un alliage binaire étain-plomb. Une expérience de macroségrégation par convection naturelle a été simulée. L'accord entre les courbes de température expérimentales et simulées atteint une précision de l'ordre de 1K, et la recalescence est correctement prédite. Les cartes de compositions sont comparables qualitativement, ainsi que la structure de grains. Les avantages du suivi de la structure ont été mis en évidence par rapport à une simulation par éléments finis classique. De plus, il a été montré que le calcul 3D était ici indispensable. Enfin, une implémentation parallèle optimisée du code a permis d'appliquer le modèle CAFE à un lingot de silicium polycristallin industriel de dimensions 0,192 x 0,192 x 2,08m, avec une taille de cellules de 250µm. Au total, 4,9 milliards de cellules sont représentées sur le domaine, et la germination et la croissance de 1,6 million de grains sont suivies. / Grain structure formation during solidification of metal parts has a big impact on the final mechanical and electronic properties. Besides determining the crystallographic texture, the nucleation and growth of grains are linked and interact with the appearance of thermodynamic phases and inhomogeneities in the alloy's chemical elements distribution. Grain structure is very rarely modeled on the macro scale, especially because the 2D approximation is often not justified. In this work, the nucleation and growth of each individual grain is tracked with the 3D CAFE macroscopic model. The internal microscopic structure is not explicitly solved. In order to validate the assumptions concerning this microstructure, a direct comparison has been done with a microscopic "phase field" model. That comparison led to the validation of some of the hypothesis on which the CAFE model is built. Moreover, the various data computed in microscopic models that can be used as input parameters of the macroscopic models have been identified, and the limits of each model clearly shown. Secondly, coupling with macrosegregation and thermodynamic databases was achieved, and applied to a binary tin-lead alloy. An experiment featuring macrosegregation induced by natural convection was modeled. The agreement between the experimental and the predicted cooling curves is within 1K, and the recalescence is found to be correctly predicted. The composition maps and the grain structure agree qualitatively with the experiment. The improvement due to structure tracking was demonstrated, regarding a standard finite elements resolution. It was also shown that the 3D simulation is mandatory to reach a good description. Finally, the model was implemented through an optimized parallel algorithm. This permitted to apply the CAFE model on an industrial scale polycrystalline silicon ingot, which dimensions are 0,192 x 0,192 x 2,08m. The cell size is chosen to be 250µm. In total, 4,9 billions of cells were represented, and the nucleation and growth of 1,6 million of grains were tracked.
|
12 |
Role Of Solid Phase Movement And Remelting On Macrosegregation And Microstructure Formation In Solidificaiton ProcessingKumar, Arvind 06 1900 (has links)
Melt convection and solid phase movement play an important role in solidification processes, which significantly influence the formation of grain structures and solute segregations. In general, the melt convection and grain movement are a result of buoyancy forces. The densities within melt are different due to the variation of temperature and concentration, leading to thermally and solutally driven melt convection. Similarly, the density differences between the grains and the bulk melt cause the grain movement, leading to solid sedimentation or grain floating, as the case may be.
Free, unattached solid grains are produced by partial remelting and fragmentation of dendrites, by mechanical disturbances such as stirring or vibration and by heterogeneous nucleation of grains in solidification of grain-refined alloys. In this way, movement of solid crystals during solidification can be ascertained in the following two cases. In the first case, during columnar solidification of non-grain-refined alloys, solid movement is possible in the form of dendrite fragments detached from the columnar stalks by the process of remelting and fragmentation. Movement of grains during columnar solidification gives rise to altogether different microstructure from columnar to equiaxed. In the second case, during equiaxed solidification of grain-refined alloys, the movement of solid crystals is possible in the form of equiaxed dendrite crystals nucleated due to presence of grain refiners. The rate and manner by which the free solids settle (or float) will influence macrosegregation in metal castings. Control of the solidification process is possible through an understanding of the solid movement and its effect on macrosegregation and microstructure.
With this viewpoint, the overall objective of the present thesis is to study, experimentally and numerically, the phenomenon of solid phase movement during solidification. Through this study, deeper insights of the role of solid phase movement in solidification are developed which can be used for possible control of quality in castings. Both columnar and equiaxed solidification are considered.
Models for transport phenomena associated with columnar solidification with solid phase movement are rarely found in the literature, because of inherent difficulty associated with consideration of microscopic features such as remelting and fragmentation. To tackle this problem, solidification modules for remelting and fragmentation are developed first, followed by integration of these molecules in a macroscopic solidification model. A Rayleigh number based fragmentation criterion is developed for detachment of dendrite fragments from the developing mushy zone, which determines the conditions favorable for fragmentation of dendrites. The criterion developed is a function of net concentration difference, liquid fraction, permeability, growth rate of mushy layer, and thermophysical properties of the material. The effect of various solidification parameters on fragmentation is highlighted. The integrated continuum model developed is applied to stimulate the solidification of aqua-ammonia system in a side-cooled rectangular cavity. The numerical results are in good qualitative agreement with those of experiments reported in literature. A gentle ramp of the mushy zone due to settling of solid crystals, as also noticed in experimental literature, is observed towards the bottom of the cavity. The influence of various modeling parameters on solid phase movement and resulting macrosegregation is investigated through a parametric study.
Movement of grains during columnar solidification gives rise to altogether different microstructure and sometimes may initiate a morphological transition of the microstructure from columnar to equiaxed if the number and size of equiaxed grains ahead of the columnar front become sufficient to arrest the columnar growth. The generalised model developed, considering solid phase movement during columnar solidification is used to predict columnar-to-equiaxed transition (CET) based on a prescribed cooling rate criterion. It is found that presence of convection significantly affects the solidification behaviour. Moreover, the movement of dendrite fragments and their accumulation at the columnar front further trigger the occurrence of CET. Cooling configuration, too significantly affects the nature of CET. In unidirectional solidification cases, the locations of CET are found to be in a plane parallel to the chill face. However, for the case of the non-unidirectional solidification (as in side-cooled cavity), the locations of CET need not be in a plane parallel to the chill face.
In contrast to fixed columnar solidification, equiaxed solidification is poorly understood; in particular, the phenomena associated with solid crystal movement. Movement of unattached solid crystals, formed due to heterogeneous nucleation on grain-refiners, is induced by the convective currents as well as by buoyancy effects, causing the solid to sediment or to float, depending on density of solid compared to that of the bulk melt. While moving in the bulk melt these crystals can also remelt or grow.
A series of casting experiments with AI-based alloys are performed to investigate the role and influence of movement of solid crystals on macrosegregation and microstructure evolution during equiaxed solidification. Controlled experiments are designed for studying, separately, settling and floatation of equiaxed crystals for different cooling conditions and configurations. Further, these experiments are carried out in convective and non-convective cases to understand the effect of convection on solid phase movement. Temperature measurements are performed at various locations in the mould during the experiments. After the cavity is solidified, microstructural and chemical analyses of the experimental samples are carried out, several notable features are observed in temperature histories, macrosegregation pattern, and microstructures due to settling/flotation phenomenon of solid crystals. It is found that the flow behavior of solid grains has a profound influence on the progress of solidification (in terms of grain size distribution and fraction eutectic) and macrosegregation distribution. In some cases, the induced flow due to solid phase movement can cause a flow reversal. The observations and quantitative data obtained from experiments, with the help of detailed solidification conditions provided, can be used for future validations of models for equiaxed solidification.
Subsequently, numerical studies are carried out, using a modified version of the macroscopic model developed for columnar solidification with motion of solid crystals, to predict the transport phenomena during equiaxed solidification. The model is applied to simulate the solidification processes corresponding to each of the experimental cases performed in this study. For a better understanding of the phenomenon of movement of solid crystals, the following two special cases of solidification are also presented: 1) without movement of solid crystals and 2) movement of solid crystals without any relative velocity between solid and liquid phases. The numerical predictions showing nature of flow field and progress of solidification are substantiated by the experimental data for the thermal analysis, qualitative microstructural Images and quantitative microstructural analysis.
It is concluded, with the help of various experiments and simulations, that movement of solid crystals influences the casting quality appreciably, in terms of macrosegregation and microstructures. It is expected that the improved understanding of the role and influence of solid phase movement during solidification processes (both columnar and equiaxed) obtained through this thesis will be useful for possible control of quality of as-cast products.
|
13 |
Modélisation et étude de la macroségrégation au cours de la refusion à l'arc sous vide : application aux alliages de zirconium / Modeling and Study of the Macrosegregation during Vacuum Arc Remelting : Application to Zirconium AlloysRevil-Baudard, Mathieu 09 July 2012 (has links)
Le procédé VAR (Vacuum Arc Remelting ou refusion à l'arc sous vide en français) est employé dans la production d'alliages à haute performance pour les industries aéronautique (aciers spéciaux, superalliages et alliages de titane) et nucléaire (alliage de zirconium). Comme pour tous les procédés de fonderie, la maîtrise de l'homogénéité chimique et de la structure métallurgique des lingots coulés par le procédé VAR constitue un enjeu industriel important. Les travaux présentés dans ce mémoire visent à identifier, pour les alliages de zirconium en particulier, les effets de la convection naturelle et de la convection forcée due au brassage électromagnétique sur la macroségrégation. Dans ce but, un modèle numérique a été développé. Il est basé sur la résolution couplée des équations de conservation d'énergie, de quantité de mouvement et de solutés, dans des conditions d'écoulement laminaire ou turbulent. La modélisation de la solidification tient compte du couplage fort entre le transport d'énergie et de solutés dans la zone pâteuse. Afin de décrire la microségrégation, la diffusion restreinte des solutés dans les phases liquides et solides peut être prise en compte. Parallèlement, deux électrodes chimiquement homogènes d'alliages Zircaloy-4 et M5® ont été spécialement refondues dans un four VAR industriel sur le site de CEZUS à Ugine (Savoie, France). La macroségrégation des lingots obtenus a été caractérisée.La comparaison entre les mesures expérimentales et les résultats de simulation a montré que pour un alliage dont l'intervalle de solidification est important (comme l'alliage Zircaloy-4), la convection solutale dans la zone pâteuse peut avoir une influence essentielle sur la macroségrégation de la région centrale du lingot. Par ailleurs, le mouvement de grains équiaxes lors de l'application d'un brassage électromagnétique de forte intensité semble accentuer significativement la macroségrégation dans la région externe du lingot. Pour un alliage dont l'intervalle de solidification est faible (comme l'alliage M5®), nous avons montré que la macroségrégation dépend plus spécifiquement de la convection forcée due au mode de brassage électromagnétique appliqué au cours de la refusion / Vacuum Arc Remelting (VAR) is used to produce high performance alloys for the aeronautic (special steels, superalloys, titanium alloys) and nuclear (zirconium alloys) industries. As for all casting processes, the control of the chemical homogeneity and the metallurgical structure in VAR ingots is an important industrial issue. The goal of this thesis is to identify, for zirconium alloys in particular, the effects of the natural convection and the forced convection due to the electromagnetic stirring on macrosegregation. To this purpose, a numerical model has been developed. It is based on the solution of the coupled transient energy, momentum and solute transport equations, under laminar or turbulent flow conditions. The solidification modeling accounts for a full coupling between energy and solute transport in the mushy zone. The finite diffusion of solutes in both solid and liquid phases can be taken into account to describe microsegregation. In addition, chemically homogeneous Zircaloy-4 and M5® electrodes have been specially remelted in an industrial VAR furnace at the CEZUS plant in Ugine (Savoie, France). The macrosegregation of the ingots has been measured. The comparison between the experimental measurements and the simulation results showed that for an alloy with a large solidification interval (like Zircaloy-4), the solutal convection in the mushy zone could have an essential influence on the macrosegregation in the inner part of the ingot. Furthermore, the motion of equiaxed grains caused by a strong stirring seems to seriously intensify macrosegregation in the outer part of the ingot. For an alloy with a small solidification interval (like M5®), we have shown that the macrosegregation depends more specifically on the forced convection due to the type of stirring applied during the remelting
|
14 |
Étude de la Transition Colonnaire-Equiaxe dans les lingots et en coulée continue d’acier et influence du mouvement des grains / Study of the Columnar-to-Equiaxed Transition in steel ingots and continuous castings and the influence of the movement of the grainsLeriche, Nicolas 01 December 2015 (has links)
Les coulées industrielles permettent de distinguer deux types de structures : colonnaires et équiaxes. La mise en place de ces structures a des conséquences importantes sur les autres hétérogénéités, particulièrement les macroségrégations chimiques. Le code SOLID, développé à l’Institut Jean Lamour, permet de décrire de manière couplée la convection naturelle du liquide ainsi que la germination, la croissance et le transport des grains équiaxes. Le travail présenté a pour but de proposer une modélisation de l’apparition et de la croissance des structures colonnaires couplées à celles des grains équiaxes, permettant ainsi de prédire la Transition Colonnaire-Equiaxe (TCE) et Equiaxe-Colonnaire (ECT). La particularité du modèle est de considérer la croissance couplée des structures uniquement au niveau des pointes primaires colonnaires car c’est à cet endroit que les gradients de soluté sont les plus importants. Après validation, le modèle est appliqué à des cas de coulées industrielles de lingots d’acier et comparé à des mesures expérimentales. Il en ressort en premier lieu que sans la modélisation du mouvement des grains équiaxes, les morphologies et les ségrégations de carbone prédites ne correspondent pas à l’expérience. Par la suite, on montre que les résultats obtenus dépendent fortement du scénario d’apparition des grains équiaxes. Une germination hétérogène volumique des grains équiaxes ne permet pas de prédire la TCE expérimentale. En revanche, la fragmentation des grains, associée à un critère pour le début de la fragmentation, prédit une TCE et des ségrégations en carbone en accord avec l’expérience. On montre alors que la masselotte des lingots peut ainsi être une source importante de grains / It is possible to distinguish two main types of structures in castings: columnar and equiaxed. The dynamic set up of these structures has a strong impact on other heterogeneities, especially the chemical macrosegregations. Developed at the Institut Jean Lamour, SOLID is a numerical code that accounts for natural convection as well as the germination, growth and transport of equiaxed grains. The purpose of this work is to model the appearance and the growth of the columnar structures coupled with the description of the equiaxed grains. The model can therefore predicts the Columnar-to-Equiaxed (CET) and Equiaxed-to Columnar (ECT) Transitions. The main characteristic of the model is to consider the coupled growth of both structures only in the zone near the tips of the primary columnar dendrites. It is indeed there that the strongest solute gradients are located. The model is verified by comparing it to experiments and other models of the literature. The model is then applied to the case of industrial steel ingots and compared to experimental measurements. The first result is that without taking into account the movement of the equiaxed grain the results for equiaxed grain morphology and for macrosegregation do not agree with the measurements. Next, we find that the phenomenon considered for equiaxed grain formation is decisive for the CET prediction. When heterogeneous volumic nucleation is considered, we were not able to predict the CET correctly. However, when fragmentation at the columnar front is considered – along with a criterion for the onset of fragmentation – the results agree quite well with the experiments. It is also shown that the hot-top of ingots is consequently an important source of equiaxed grains
|
15 |
Návrh technologie a ověření výroby malých ocelových ingotů / Design of a technology and checking the production of small steel ingotsJakubčíková, Lucie January 2019 (has links)
The thesis deals with the design of ingots from duplex (austenitic-ferritic) stainless steels in terms of minimal occurrence of axial porosity. The optimal shape and dimension of the ingot and the casting conditions are determined based on numerical simulations. The resulting internal quality of the realized ingot is evaluated. The presence of shrinkage porosity is determined by penetrant testing. The degree of chemical heterogeneity, the extent of macrosegregation, of selected elements in given ingot locations is measured by an optical emission spectrometer. Segregation values are compared with simulation results. The micro-purity of the ingot is assessed on the basis of metallographic samples.
|
16 |
Hardening Distortions of Serial Produced GearsOlofsson, Anders January 2017 (has links)
Hardening distortions are unwanted changes in shape and dimension that arise during hardening of steel components. Uncontrolled distortions induce random errors to the manufacturing process, and have a strong negative impact on manufacturing costs. The distortions are not only caused by the hardening process, several factors from previous manufacturing steps including the component geometry itself contribute to varying extent. The aim of the current work is to investigate the main influencing factors on hardening distortions for serial produced gears. The investigations were done on two different types of gears for heavy-duty transmissions, crown wheels for the rear axle central gear and main shaft gears for the gearbox. The steel was produced using either continuous casting or ingot casting. For rectangular continuously cast steel, the effect of disabling magnetic stirring of the steel melt during casting was investigated, finding a strong reduction of gear runout for crown wheels. Segregations in crown wheels produced from the top and bottom of ingots were shown to go in opposite directions, producing opposite back-face tilts. For crown wheels quenched one at a time, influences of stacking level on the hardening tray were found, indicating an impact from small variations in the carburizing process, despite identical quenching conditions. For main shaft gears, horizontal loading gave considerably less roundness and runout errors but increased flatness errors compared to vertical loading. This thesis shows the complexity of the distortion phenomenon and how several factors interact and contribute to the final result. It is shown that factors with significant impact on hardening distortions for one component may be less important for another component. With this in mind, each type of component to be hardened should be produced by a manufacturing chain where each process step is carefully chosen with respect to minimizing distortions. / <p>QC 20170516</p>
|
17 |
Modeling of Transport Phenomena and Macrosegregation during Directional Solidification of AlloysSajja, Udaya Kumar 30 April 2011 (has links)
This dissertation mainly focuses on the development of new numerical models to simulate transport phenomena and predict the occurrence of macrosegregation defects known as freckles in directional solidification processes. Macrosegregation models that include double diffusive convection are very complex and require the simultaneous solution of the conservation equations of mass, momentum, energy and solute concentration. The penalty method and Galerkin Least Squares (GLS) method are the most commonly employed methods for predicting the interdendritic flow of the liquid melt during the solidification processes. The solidification models employing these methods are computationally inefficient since they are based on the formulations that require the coupled solution to velocity components in the momentum equation Motivated by the inefficiency of the previous solidification models, this work presents three different numerical algorithms for the solution of the volume averaged conservation equations. First, a semi explicit formulation of the projection method that allows the decoupled solution of the velocity components while maintaining the coupling between body force and pressure gradient is presented. This method has been implemented with a standard Galerkin finite element formulation based on bi-linear elements in two dimensions and tri-linear elements in three dimensions. This formulation is shown to be robust and very efficient in terms of both the memory and the computational time required for the macrosegregation computations. The second area addressed in this work is the use of adaptive meshing with linear triangular elements together with the Galerkin finite element method and the projection formulation. An unstructured triangular mesh generator is integrated with the solidification model to produce the solution adapted meshes. Strategies to tackle the different length scales involved in macrosegregation modeling are presented. Meshless element free Galerkin method has been investigated to simulate the solidification processes to alleviate the difficulties associated with the dependence on the mesh. This method is combined with the fractional step method to predict macrosegregation. The performance of these three numerical algorithms has been analyzed and two and three dimensional simulations showing the directional solidification of binary Pb-Sn and multicomponent Ni base alloys are presented.
|
18 |
Effect of Convection Associated with Cross-section Change during Directional Solidification of Binary Alloys on Dendritic Array Morphology and MacrosegregationGhods, Masoud 17 July 2017 (has links)
No description available.
|
19 |
Influence Of Cross-Section Change During Directional Solidification On Dendrite Morphology, Macrosegregation And Defect Formation In Pb-6 wt Sb AlloyLacdao, Claudine 25 August 2017 (has links)
No description available.
|
Page generated in 0.0807 seconds