531 |
Electron spin resonance studies of frustrated quantum spin systemsKamenskyi, Dmytro 19 March 2013 (has links)
Since the last few decades frustrated spin systems have attracted much interest. These studies are motivated by the rich variety of their unusual magnetic properties and potential applications. In this thesis, excitation spectra of the weakly coupled dimer system Ba3Cr2O8, the spin-1/2 chain material with distorted diamond structure Cu3(CO3)2(OH)2 (natural mineral azurite), and the quasi-twodimensional antiferromagnet with triangle spin structure Cs2CuBr4 have been studied by means of high-field electron spin resonance. Two pairs of gapped modes corresponding to transitions from a spin-singlet ground state to the first excited triplet state with zero-field energy gaps, of 19.1 and 27 K were observed in Ba3Cr2O8.
The observation of ground-state excitations clearly indicates the presence of a non-secular term allowing these transitions. Our findings are of crucial importance for the interpretation of the field-induced transitions in this material (with critical fields Hc1 = 12.5 T and Hc2 = 23.6 T) in terms of the magnon Bose-Einstein condensation. The natural mineral azurite, Cu3(CO3)2(OH)2, has been studied in magnetic fields up to 50 T, revealing several modes not observed previously. Based on the obtained data, all three critical fields were identified.
A substantial zero-field energy gap, Δ = 9.6 K, has been observed in Cs2CuBr4 above the ordering temperature. It is argued that contrary to the case for the isostructural Cs2CuCl4, the size of the gap can not be explained solely by the uniform Dzyaloshinskii-Moriya interaction, but it is rather the result of the geometrical frustration stabilizing the spin-disordered state in Cs2CuBr4 in the close vicinity of the quantum phase transition between a spiral magnetically ordered state and a 2D quantum spin liquid.
|
532 |
Material Interactions and Self-Assembly in Inkjet PrintingAl-Milaji, Karam Nashwan 01 January 2019 (has links)
Inkjet printing has attracted much attention in recent years as a versatile manufacturing tool, suitable for printing functional materials. This facile, low-cost printing technique with high throughput and accuracy is considered promising for a wide range of applications including but not limited to optical and electronic devices, sensors, solar cells, biochips, and displays. The performance of such functional devices is significantly influenced by the deposit morphology and printing resolution. Therefore, fabrication functional devices with precise footprints by inkjet printing requires deep understanding of ink properties, material interactions, and material self-assembly.
In conventional inkjet printing process, where sessile droplets are directly printed on substrates, particle depositions are usually associated with the well-known, undesirable coffee-ring effect due to the high solvent evaporation rate at the edges of the printed droplets. Such particle accumulation phenomenon in vicinity of the three-phase contact lines of sessile droplets is considered detrimental to inkjet printing applications. This study investigates the material interactions and self-assembly of colloidal inks in inkjet printing applications at different length scales. The potential of inkjet printing has been exploited through employing the dual-droplet inkjet printing of colloidal particles to investigate the self-assembly of colloidal nanoparticles at the air-liquid interface and at the three-phase contact line of sessile droplets, which provide better understanding of the particle deposition morphologies after solvent evaporation. Different from conventional inkjet printing, the dual-droplet printing involves jetting wetting droplets, containing colloidal nanoparticles dispersed in solvents with high vapor pressure, over supporting droplets composed of water only. By tuning the surface tensions and controlling the jetting parameters of the jetted droplets, monolayers with closely-packed deposition of colloidal nanoparticles are demonstrated. Various solutions are proposed to totally suppress or mitigate the coffee-ring effect in inkjet printing applications through tuning the pH value of the supporting droplets in the dual-droplet inkjet printing to control the multibody interactions (i.e., particle-particle, particle-interface, and particle-substrate interactions) or by applying magnetic field to direct the self-assembly of colloidal particles in conventional inkjet printing. In addition, the influence of various forces such as drag force, van der Waals force, electrotactic force, and capillary force on the particle deposition and assembly in vicinity of the three-phase contact line area were investigated for both the conventional and dual-droplet inkjet printing techniques.
Finally, fabrication of functional devices such as stretchable conductors have also been demonstrated by inkjet printing of silver nanowires into elastomer substrate, where the viscous liquid elastomer layer shaped the printed silver wire lines into tens of micrometers in dimeter. The silver nanowires align along the printing direction during solvent evaporation, resulting in wires with good mechanical stability and electrical performance. The printing techniques and the outcomes presented in this study can be harnessed in engineering and manufacturing a wide range of technological applications ranging from high-performance optical and electronic devices to stretchable conductors and sensors.
|
533 |
Photodegradation of selected pharmaceuticals using magnetic-carbon dot loaded on different TiO2 nanostructures.Moshoeu, Edna Dimakatso 11 1900 (has links)
M.Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / To replace the conventional wastewater treatment technology, photocatalysis has the best potential due to its utilization of visible light to photodegrade organic and inorganic contaminants. However, agglomeration of nanoparticles leads to serious decrease in photocatalytic performance when applied in slurry form, due to hindrance effect. TiO2 semiconductor photocatalyst mediated advanced oxidation process is referred to as one of the most efficient technologies to degrade organic pollutants in water. However, TiO2 semiconductor for water purification hinders large scale applicability due to poor activity under visible light and the recombination of photogenerated electron and hole pairs. The modification of TiO2 semiconductor photocatalyst with carbon dots (CDs) is of high importance due to low toxicity, aqueous stability, enhanced surface area, economic feasibility, good biocompatibility and chemical inertness of CDs. Herein, strategies are highlighted to improve the activity of TiO2 semiconductor photocatalyst by coupling it with CDs and Fe2O3. In this study, we study the morphological influence of TiO2 nanostructures on photocatalytic degradation of tetracycline hydrochloride present in industrial wastewater. TiO2 nanostructures, nanotubes, nanospheres and nanofibers were Synthesized using the hydrothermal technique. TiO2 nanotubes, nanofibers and nanospheres were prepared by the hydrothermal treatment of TiO2 nanoparticles with different NaOH concentrations (5, 10 and 12 N) at 120 and 140 ˚C; afterwards, HCl was added until it reached pH 2. Both the crystalline phase and coordination of the TiO2 nanotubes, nanofibers and nanospheres were composed principally. Likewise, the surface area, pore volume and pore size of the TiO2 nanotubes, nanofibers and nanospheres changed with the NaOH rinsing treatment. The photocatalytic activity for tetracycline degradation were strongly enhanced by the nanofibers and nanotubes in the basic and acid media, respectively, showing a relationship between their structure and the medium. TiO2 nanostructures and the composite material were characterized by scanning electron microscope\SEM), X-Ray Diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FTIR). BET surface area analysis was carried out using nitrogen adsorption desorption curves. The results show that TiO2 morphology had great influence on photocatalytic degradation of tetracycline hydrochloride due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under visible-LED light. TiO2 nanofibers show better degradation performance than nanotubes and nanospheres due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length scales of pores and presence of oxygen vacancies. Agricultural biomass pine bark serves as a carbon source and was doped into TiO2-nanofibers (TNF) to fabricate the composite material (CD-TNF). CD-TNF composite nanofibers were prepared via a facile hydrothermal method. This study revealed that the photocatalytic efficiency of tetracycline (TC) under visible light irradiation of the composite nanofiber is higher than that of pure TiO2-nanofiber. The anchored CDs can both enhance the light absorption and suppress photogenerated electron hole recombination which results in the enhancement of catalytic and antibacterial properties. The CDs can better capture and transfer photogenerated electrons through the Ti-O-C and Fe-O-C bonds. Moreover, CDs can improve the utilization of photogenerated electrons and the electrons in CDs are captured by O2 to produce O2•- radicals and the role of O2•- radicals in the photocatalytic process is significantly improved. A new efficient photocatalyst consisting of TiO2/CD/Fe2O3 composite material was Synthesized by the hydrothermal treatment and applied in the photodegradation of 5 mg/L tetracycline hydrochloride (TC) under visible-LED light. The CDs/TiO2/Fe2O3 composite showed enhanced photocatalytic performance for tetracycline photodegradation when compared with TiO2/CDs and pure TiO2 under the visible light irradiation. The mechanism of the improved photocatalytic activity over CDs/TiO2/Fe2O3 was also investigated. The influence of the interface formation between Fe2O3 and TiO2/CDs affects severely the charges separation efficiency and enhances the electron transfer to keep on the existence of Fe3+/Fe2+ moieties that take significant role in the reaction mechanism.
|
534 |
Elektronische und geometrische Struktur von oxidischen Mikroclustern am Beispiel von MgOMeyer, Carsten 11 September 2000 (has links)
Im Rahmen der vorliegenden Arbeit ist ein selbstkonsistentes, ab-initio Verfahren (SCTBLMTO) entwickelt worden,
das die Berechnung elektronischer und geometrischer Strukturen von heterogenen Mikroclustern im Rahmen der
Tight-Binding Linear-Muffin-Tin-Orbital Näherung gestattet. Mittels der sogenannten
Atomic-Sphere-Approximation (ASA) ist hierbei eine kompakte Formulierung des Hamiltonoperators möglich. Durch
die Bestimmung der totalen Energie der Cluster in der Ein-Zentren-Näherung kann die numerisch aufwendige
Berechnung der über den ganzen Cluster ausgedehnten Wellenfunktion und damit der dreidimensionalen
Elektronendichte umgangen werden. Die angewendeten Approximationen erlauben es, selbst auf vergleichsweise
langsamen Rechnern, Cluster mit bis zu einigen hundert Atomen ohne Symmetrieeinschränkungen selbstkonsistent zu
berechnen. Gegenüber anderen ab-initio Verfahren bedeutet dies eine Steigerung der berechenbaren Clustergröße um
einen Faktor sechs. Im weiteren wurde gezeigt, daß die Parallelisierung des Algorithmus, d.h. die Verteilung von
Rechenschritten auf mehrere parallel arbeitende Rechner die Laufzeit des Programms drastisch reduziert.
Um die Implementation des SCTBLMTO-Verfahrens zu überprüfen, wurden zunächst Vergleichsrechnungen an
kleinen MgON-Clustern mit einem kommerziell verfügbaren DFT-Verfahren (DMol) durchgeführt. Hier traten
deutliche Relaxationseffekte bei der geometrischen Struktur der Cluster mit der Herausbildung typischer
Bindungswinkel in den kubischen Strukturen zutage. Eine Analyse der Clustergeometrien ergab zudem eine
ausgeprägte Abhängigkeit der Bindungsabstände der Atome von deren jeweiligen Koordinationszahlen. MgO18, mit 36
Atomen der größte mit DMol berechenbare Cluster, besitzt trotz der Tatsache, daß etwa 94% seiner Atome an der
Clusteroberfläche positioniert sind, bereits 96% der Bindungsenergie des Festkörpers. Dies läßt den Schluß zu, daß die
spezifische Kohäsionsenergie von Oberflächenatomen des Clusters sich nicht sehr stark vom Bulkwert unterscheidet.
Ein einfaches Modell, welches die Beiträge zur Kohäsionsenergie anhand der Atompositionen in den kubischen und
den ringförmigen Clustern festlegt, bestätigt diese Vermutung. Anhand des Modells kann ferner geschlossen werden,
daß ein stabiles Wachstum einer kubischen, dem Festkörper ähnlichen Phase ab einer Clustergröße von N=15
Molekülen an beginnt. Die Erklärung der gemessenen Abundance Spektren von MgON-Clustern ist allein auf Basis
der totalen Energien der Cluster nicht möglich. Erst die Betrachtung des Zerfalls von neutralen und ionisierten
Clustern in Fragmente unterschiedlicher Größe kann die Messungen erklären. Insgesamt ist die Stabilität der Cluster
durch das Zusammenspiel elektronischer Effekte, wie z.B. hoher oder niedriger Ionisationsenergien und geometrischer
Effekte begründet. Ferner wurde gezeigt, daß auf Basis der ermittelten Daten gemessene
Collision-Induced-Fragmentation (CIF) Muster quantitativ interpretierbar sind.
Die SCTBLMTO-Rechnungen für sehr kleine MgON-Cluster ergeben im Vergleich mit den Referenzrechnungen
einerseits und den experimentellen Befunden andererseits keine zufriedenstellenden Resultate für die
Kohäsionsenergien. Der Grund hierfür liegt eindeutig darin, daß diese Geometrien Grenzfälle der Muffin-Tin- (MT)
Näherung darstellen. Durch die Einführung von Leerkugeln verbessern sich die Resultate deutlich. Im Gegensatz
hierzu stimmen die Gleichgewichtsabstände der Cluster, d.h. im Endeffekt die Minima in der totalen Energie als
Funktion der Atomabstände, überraschend gut mit den Referenzdaten im Rahmen der lokalen Dichteapproximation
(LDA) überein. Auch hier bewirkt die MT-Näherung einen Teil des Fehlers, der jedoch mit zunehmender Clustergröße
geringer wird. Im Vergleich der Hypergeometrieflächen, die mit unterschiedlichen Rechenverfahren ermittelt wurden,
zeigt die SCTBLMTO-Methode zwar recht große Isomerunterschiede, beurteilt die lokalen Minima relativ zueinander
und damit die geometrischen Grundzustände jedoch meist richtig. Die Untersuchungen zeigten weiter, daß
Korrelationseffekte einen starken Einfluß auf die Gleichgewichtsgeometrien der Cluster haben und daher unbedingt
berücksichtigt werden müssen. Die totalen sowie die lokalen Zustandsdichten der kleinen Cluster werden von dem hier
entwickelten Verfahren in guter Übereinstimmung mit den DMol-Referenzdaten wiedergegeben. Einzig die Zustände
im unbesetzten Teil der DOS werden durch die Muffin-Tin-Näherung verzerrt.
Schließlich läßt sich zumindest bei kleinen MgON-Clustern ein deutlicher Zusammenhang zwischen der Position der
Atome und deren elektronischer Struktur herstellen. Eine detaillierte Analyse der lokalen Zustandsdichte ergibt:
Atome an den Ecken der Cluster bilden den höchsten besetzten Zustand, wogegen Atome, die sich innerhalb der
Cluster befinden, tieferliegende Zustände besetzen. In allen Strukturen bilden die Sauerstoffatome das höchste
besetzte Orbital und die Magnesiumatome das niedrigste unbesetzte. Insgesamt können die Bindungsverhältnisse in
den MgO-Clustern als lokalisiert charakterisiert werden.
Gegenüber der schnellen Annäherung der geometrischen Eigenschaften an die Festkörperstruktur konvergieren die
lokalen Zustandsdichten der Zentralatome langsamer gegen die DOS des Festkörpers. Erst ab MgO147, bei dem die
Zentralatome von drei Schichten von oberflächennahen Atomen umgeben sind, können auch Details der
Bulkzustandsdichte in der LDOS zugeordnet werden.
|
535 |
The Effect Of Sub Tx Heat Treatments On The Magnetic Properties Of An Fe-based Bulk Metallic GlassJakob, Grunditz January 2022 (has links)
Metallic glasses produced with Selective Laser Melting (SLM) often contain internal mechanic stress. This internal stress can have an impact on the magnetic properties of the material due to its connection to the magnetic anisotropy of the material. Therefore the effect of different heat treatments aimed to reduce the effect of internal stress on the magnetic properties of an Fe-based Metallic Glass (MG) and how this relates to the crystallization of the material was examined in this project. The magnetic properties were measured with a Vibrating Sample Magnetometer (VSM) and the Longitudinal Magneto-Optic Kerr Effect (L-MOKE) and structural changes to the material from the heat treatments, such as crystallization, was examined with X-Ray powder Diffraction (XRD) before and after heat treatment. From the measurements we found that heat treatments close to and above the crystallization temperature Tx lead to crystallization and a decrease in magnetic saturation MS. Heat treatments below Tx around 430°C showed a smaller reduction in MS but did not show any crystallization. The measurements with L-MOKE showed no consistent change in coercivity so no conclusion could be drawn from these. / Metallglas som tillverkats med den additiva tillverkningstekniken Selective Laser Melting (SLM) innehåller ofta interna mekaniska spänningar. Dessa spänningar kan på grund av deras koppling till materialets magnetiska anisotropi ha en påverkan på materialets magnetiska egenskaper. I detta projekt har därför effekten av olika värmebehandlingar utförda för att minska de interna spänningarnas påverkan på de magnetiska egenskaperna av ett Fe-baserad metallglas och hur detta relaterar till kristalliseringen av materialet undersökts. De magnetiska egenskaperna av materialet mättes med en Vibrating Sample Magnetometer (VSM) och Longitudinal Magneto-Optic Kerr Effect (L-MOKE). Strukturella förändringar, så som kristallisering, hos materialet orsakade värmebehandlingarna undersöktes med X-Ray powder Diffraction (XRD). Samtliga mätningar genomfördes före och efter värmebehandling. Från mätningarna fann vi att värmebehandlingar nära kristalliseringstemperaturen Tx gav kristalltillväxt samt minskade mättnadsmagnetisering MS. Värmebehandlingar under Tx runt 430°C gav en lägre reducering av MS samt gav ej någon kristalltillväxt. L-MOKE-mätningarna gav ingen konsekvent förändring i materialets koercivitet och inga slutsatser kunde därmed dras från dessa.
|
536 |
EXPLOITING MAGNETIC CORRELATIONS IN LOW-DIMENSIONAL HYBRID QUANTUM SYSTEMS: TOWARDS NEXT-GENERATION SPINTRONIC DEVICESMohammad Mushfiqur Rahman (16792350) 07 August 2023 (has links)
<p>In recent years, correlated magnetic phenomena have emerged as a unique resource for enabling alternative computing, memory, and sensing applications. This has led to the exploration of novel magnetic hybrid platforms with the promise of improved figures of merit over the state-of-the-art. In this dissertation, we delve into several example platforms where magnets interact with various other degrees of freedom, resulting in enhanced figures of merit and/or the emergence of novel functionalities.</p><p>First, we investigate the possibility of utilizing the collective resonant mode of nanomagnets to enhance the electric field sensitivity of quantum spin defects. While quantum systems have garnered significant attention in recent years for their extraordinary potential in information processing, their potential in the field of quantum sensing remains yet to be fully explored. Quantum systems, with their inherent fragility to external signals, can be harnessed as powerful tools to develop highly efficient sensors. In this dissertation, we explore the potential of a specific type of quantum sensor, namely the quantum spin defects as an electric field sensor, when integrated with a nanomagnet/piezoelectric composite multiferroic. This integration yields at least an order of magnitude enhancement in sensitivity, presenting a promising avenue for quantum sensing applications.</p><p>Next, we shift our focus towards harnessing magnetic correlation in the emerging class of atomically thin magnets known as van der Waals magnets. These magnets provide distinctive opportunities for controlling and exploiting magnetic correlations. Specifically, these platforms allow for tunable magnetic interactions by twisting two vertically adjacent layers of the magnet, features that are unique to van der Waals materials. By capitalizing on such twist degrees of freedom, we demonstrate the creation of twist-tunable nanoscale magnetic ground states. This capability opens up avenues for applications such as high-density memories and magnon crystals.</p><p>Interestingly, the same material platform also allows for exploiting magnetic correlation by controlling the local electrical environment. We uncover the symmetry-allowed spin-charge coupling mechanisms in the heterostructures of such magnets, a prediction that has received experimental support. Utilizing such an understanding, we propose a setup for the electrical generation of magnons. Magnons—the elementary excitation of spin waves—have garnered a lot of attention these days due to their potential to couple various diverse physical systems and in the field of low dissipation computing. Our findings offer a potential pathway towards the realization of magnon-based spintronic devices.</p>
|
537 |
Prussian Blue Nanoparticles and its Analogues as New-Generation T1-Weighted MRI Contrast Agents for Cellular ImagingShokouhimehr, Mohammadreza 14 June 2010 (has links)
No description available.
|
538 |
Crystal Growth, Structure and Anisotropic Magnetic Properties of Quasi-2D MaterialsSelter, Sebastian 15 June 2021 (has links)
In this work, the crystal growth as well as structural and magnetic investigations of several metal trichalcogenides compounds with a general formula M2X2Ch6 are presented. M stands for a main group metal or transition metal, X is an element of the IV or V main group and Ch is a chalcogen. In particular, these compounds are the phosphorus sulfides Fe2P2S6, Ni2P2S6 as well as intermediate compounds of the substitution regime (Fe1-xNix)2P2S6, the quarternary phosphorus sulfides CuCrP2S6 and AgCrP2S6 and the germanium tellurides Cr2Ge2Te6 and In2Ge2Te6. As members of the metal trichalcogenides, all these compounds have a van der Waals layered honeycomb structure in common. This layered structure in combination with their magnetic properties makes these compounds interesting candidate materials for the production of magnetic monolayers by exfoliation from bulk crystals.
Crystals of the phosphorus sulfides were grown by the chemical vapor transport technique and, for the growth of the germanium tellurides, the self-flux growth technique was used. Crystals of all phases were extensively characterized regarding their morphology, chemical composition and homogeneity as well as regarding their crystal structure. The structural analysis, especially for Ni2P2S6, yields insight into details of the stacking order and disorder of the corresponding quasi-two-dimensional layers in the bulk.
Regarding the magnetic properties, both Fe2P2S6 and Ni2P2S6 order antiferromagnetically but exhibit different magnetic anisotropies (i.e. Ising-like anisotropy for Fe2P2S6 and XYZ anisotropy for Ni2P2S6). In this context, it is surprising to find that compounds in the solid solution regime of (Fe1-xNix)2P2S6 up to x = 0.9 exhibit an anisotropic magnetic behavior that is comparable to Fe2P2S6 and, thus, indicative of Ising-like anisotropy. For CuCrP2S6 and AgCrP2S6, the ordering of the two different transition elements on the honeycomb sites yields more complex magnetic structures. The magnetic Cr3+ atoms in CuCrP2S6 order in a triangular arrangement and form an antiferromagnetic ground state with notable ferromagnetic interactions. AgCrP2S6 exhibits pronounced features of low dimensional magnetism resulting from the (quasi-)one-dimensional stripe-like arrangement of magnetic Cr3+ atoms and no onset of long-range magnetic order is unambiguously observed. Cr2Ge2Te6 exhibits ferromagnetic order and an anisotropic feature in the temperature dependence of the magnetization. Based on the magnetic phase diagrams for two orientations between the magnetic field and the crystallographic directions, the temperature dependence of the magnetocrystalline anisotropy constant as well as the critical exponents of the magnetic phase transition are extracted. Concluding from this, the magnetic interactions in Cr2Ge2Te6 are dominantly of two-dimensional nature and the anisotropy is uniaxial with the before mentioned anisotropic feature resulting from the interplay between magnetocrystalline anisotropy, magnetic field, and temperature. In2Ge2Te6 is diamagnetic as to be expected for a closed-shell system.
Additional to the investigations on single crystals, the quasi-binary phase diagram of (Cu1-xAgx)CrP2S6 was investigated for regimes of solid solution behavior based on polycrystalline samples. Accordingly, isostructural substitution is most likely possible in the composition range of (Cu0.25Ag0.75)CrP2S6 to AgCrP2S6, potentially allowing to tune the magnetic interactions of the Cr sublattice indirectly by substitution on the Cu/Ag sublattice.:1. Introduction
1.1. M2X2Ch6 Class of Materials
1.2. Magnetism in Solid State Materials
1.2.1. Diamagnetism
1.2.2. Paramagnetism
1.2.3. Cooperative Magnetism
1.2.4. Magnetic Anisotropy
1.2.5. Magnetism in D < 3
1.2.6. Critical Exponents
2. Methods
2.1. Synthesis and Crystal Growth
2.1.1. Solid State Synthesis
2.1.2. Crystal Growth via the Liquid Phase
2.1.3. Crystal Growth via the Vapor Phase
2.2. X-ray Diffraction
2.2.1. Single Crystal X-ray Diffraction
2.2.2. Powder X-ray Diffraction
2.3. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
2.3.1. Scanning Electron Microscopy
2.3.2. Energy Dispersive X-ray Spectroscopy
2.4. Magnetometry
2.5. Nuclear Magnetic Resonance Spectroscopy
2.6. Specific Heat Capacity
3. M2P2S6
3.1. Ni2P2S6
3.1.1. Crystal Growth
3.1.2. Characterization
3.1.3. Magnetic Properties
3.1.4. 31P-NMR Spectroscopy
3.1.5. Stacking (Dis-)Order in Ni2P2S6
3.2. (Fe1-xNix)2P2S6
3.2.1. Synthesis and Crystal Growth
3.2.2. Characterization
3.2.3. Evolution of Magnetic Properties
3.3. Summary and Outlook
4. M1+CrP2S6
4.1. CuCrP2S6
4.1.1. Crystal Growth
4.1.2. Characterization
4.1.3. Magnetic Properties
4.2. AgCrP2S6
4.2.1. Crystal Growth
4.2.2. Characterization
4.2.3. Magnetic Properties
4.3. Polycrystalline (Cu1-xAgx)CrP2S6
4.3.1. Synthesis
4.3.2. Phase Analysis
4.4. Summary and Outlook
5. M2(Ge,Si)2Te6
5.1. Cr2Ge2Te6
5.1.1. Crystal Growth
5.1.2. Characterization
5.1.3. Magnetic Properties
5.1.4. Analysis of the Critical Behavior
5.2. In2Ge2Te6
5.2.1. Crystal Growth
5.2.2. Characterization
5.2.3. Magnetic Properties
5.2.4. Specific Heat
5.3. Summary and Outlook
6. Conclusion
Bibliography
List of Publications
Acknowledgements
Eidesstattliche Erklärung
A. Appendix
A.1. Scanning Electron Microscopic Images
A.1.1. (Fe1-xNix)2P2S6
A.2. scXRD
A.2.1. (Fe1-xNix)2P2S6 / In dieser Arbeit werden die Kristallzüchtung sowie strukturelle und magnetische Untersuchungen an mehreren Metalltrichalkogenid-Verbindungen mit der allgemeinen Summenformel M2X2Ch6 vorgestellt. M steht für ein Hauptgruppen- oder Übergangsmetall, X ist ein Element der IV- oder V-Hauptgruppe und Ch ein Chalkogen. Insbesondere handelt es sich bei diesen Verbindungen um die Phosphorsulfide Fe2P2S6, Ni2P2S6 sowie um Verbindungen der Substitutionsreihe (Fe1-xNix)2P2S6, die quaternären Phosphorsulfide CuCrP2S6 und AgCrP2S6 sowie die Germaniumtelluride Cr2Ge2Te6 und In2Ge2Te6. Als Mitglieder der Metalltrichalkogenide haben alle diese Verbindungen eine van-der-Waals-Schichtstruktur mit Honigwabenmotiv gemein. Diese Schichtstruktur in Kombination mit ihren magnetischen Eigenschaften macht diese Verbindungen zu interessanten Kandidaten für die Herstellung von magnetischen Monolagen durch Exfoliation aus Volumenkristallen.
Kristalle der Phosphorsulfide wurden mit der chemischen Dampfphasentransporttechnik gezüchtet und für die Züchtung der Germaniumtelluride wurde die Selbstflusstechnik verwendet. Die Kristalle aller Phasen wurden sowohl hinsichtlich ihrer Morphologie, chemischen Zusammensetzung und Homogenität als auch hinsichtlich ihrer Kristallstruktur umfassend charakterisiert. Die Strukturanalyse, insbesondere für Ni2P2S6, gibt Aufschluss über Details der Stapelordnung und -unordnung der entsprechenden quasizweidimensionalen Schichten im Volumen.
Bezüglich der magnetischen Eigenschaften ordnen sowohl Fe2P2S6 als auch Ni2P2S6 antiferromagnetisch, zeigen aber unterschiedliche magnetische Anisotropien (d.h. Ising-artige Anisotropie für Fe2P2S6 und XYZ-Anisotropie für Ni2P2S6). In diesem Zusammenhang ist es überraschend, dass Verbindungen im Mischkristallregime von (Fe1-xNix)2P2S6 bis x = 0.9 ein anisotropes magnetisches Verhalten zeigen, das mit dem von Fe2P2S6 vergleichbar ist und daher auf Ising-artige Anisotropie hindeutet. Bei CuCrP2S6 und AgCrP2S6 führt die Anordnung der beiden unterschiedlichen Übergangselemente auf den Gitterplätzen der Wabenstruktur zu komplexeren magnetischen Strukturen. Die magnetischen Cr3+ Atome in CuCrP2S6 ordnen sich in einer Dreiecksanordnung an und bilden einen antiferromagnetischen Grundzustand mit ausgeprägten ferromagnetischen Wechselwirkungen. AgCrP2S6 weist deutliche Merkmale von niederdimensionalem Magnetismus auf, welche aus der (quasi-)eindimensionalen, streifenartigen Anordnung der magnetischen Cr3+ Atome resultieren, und das Einsetzen von langreichweitiger magnetischer Ordnung kann nicht eindeutig beobachtet werden. Cr2Ge2Te6 weist ferromagnetische Ordnung und einen anisotropen Verlauf der Temperaturabhängigkeit der Magnetisierung auf. Anhand von magnetischen Phasendiagrammen für zwei Orientierungen zwischen Magnetfeld und kristallographischen Richtungen wurden die Temperaturabhängigkeit der magnetokristallinen Anisotropiekonstante sowie die kritischen Exponenten des magnetischen Phasenübergangs extrahiert. Hieraus ergibt sich, dass die magnetischen Wechselwirkungen in Cr2Ge2Te6 überwiegend zweidimensionaler Natur sind und die Anisotropie uniaxial ist, wobei der zuvor erwähnte anisotrope Verlauf aus dem Zusammenspiel von magnetokristalliner Anisotropie, Magnetfeld und Temperatur resultiert. In2Ge2Te6 ist diamagnetisch, wie es für ein System mit geschlossener Schale zu erwarten ist.
Zusätzlich zu den Untersuchungen an Einkristallen wurde das quasibinäre Phasendiagramm von (Cu1-xAgx)CrP2S6 anhand von polykristallinen Proben auf Bereiche mit Mischkristallverhalten hin untersucht. Folglich ist eine isostrukturelle Substitution höchstwahrscheinlich im Zusammensetzungsbereich von (Cu0.25Ag0.75)CrP2S6 bis AgCrP2S6 möglich, was es erlauben könnte, die magnetischen Wechselwirkungen des Cr-Untergitters indirekt durch Substitution auf dem Cu/Ag-Untergitter zu beeinflussen.:1. Introduction
1.1. M2X2Ch6 Class of Materials
1.2. Magnetism in Solid State Materials
1.2.1. Diamagnetism
1.2.2. Paramagnetism
1.2.3. Cooperative Magnetism
1.2.4. Magnetic Anisotropy
1.2.5. Magnetism in D < 3
1.2.6. Critical Exponents
2. Methods
2.1. Synthesis and Crystal Growth
2.1.1. Solid State Synthesis
2.1.2. Crystal Growth via the Liquid Phase
2.1.3. Crystal Growth via the Vapor Phase
2.2. X-ray Diffraction
2.2.1. Single Crystal X-ray Diffraction
2.2.2. Powder X-ray Diffraction
2.3. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
2.3.1. Scanning Electron Microscopy
2.3.2. Energy Dispersive X-ray Spectroscopy
2.4. Magnetometry
2.5. Nuclear Magnetic Resonance Spectroscopy
2.6. Specific Heat Capacity
3. M2P2S6
3.1. Ni2P2S6
3.1.1. Crystal Growth
3.1.2. Characterization
3.1.3. Magnetic Properties
3.1.4. 31P-NMR Spectroscopy
3.1.5. Stacking (Dis-)Order in Ni2P2S6
3.2. (Fe1-xNix)2P2S6
3.2.1. Synthesis and Crystal Growth
3.2.2. Characterization
3.2.3. Evolution of Magnetic Properties
3.3. Summary and Outlook
4. M1+CrP2S6
4.1. CuCrP2S6
4.1.1. Crystal Growth
4.1.2. Characterization
4.1.3. Magnetic Properties
4.2. AgCrP2S6
4.2.1. Crystal Growth
4.2.2. Characterization
4.2.3. Magnetic Properties
4.3. Polycrystalline (Cu1-xAgx)CrP2S6
4.3.1. Synthesis
4.3.2. Phase Analysis
4.4. Summary and Outlook
5. M2(Ge,Si)2Te6
5.1. Cr2Ge2Te6
5.1.1. Crystal Growth
5.1.2. Characterization
5.1.3. Magnetic Properties
5.1.4. Analysis of the Critical Behavior
5.2. In2Ge2Te6
5.2.1. Crystal Growth
5.2.2. Characterization
5.2.3. Magnetic Properties
5.2.4. Specific Heat
5.3. Summary and Outlook
6. Conclusion
Bibliography
List of Publications
Acknowledgements
Eidesstattliche Erklärung
A. Appendix
A.1. Scanning Electron Microscopic Images
A.1.1. (Fe1-xNix)2P2S6
A.2. scXRD
A.2.1. (Fe1-xNix)2P2S6
|
539 |
Facets of Computation Platforms: From Conceptual Frameworks to Practical InstantiationsRishabh Khare (13124754) 20 July 2022 (has links)
<p> </p>
<p>We live in an age in which computation touches upon every aspect of our lives in ever increasing ways. To meet the demand for increased computing power and ability, new computation strategies are continually being proposed. In this dissertation, we consider two research projects related to two such cutting edge paradigms. We first consider developing superconducting devices that implement asynchronous reversible ballistic computation. This paradigm was developed to circumvent Landauer’s principle of a minimum energy required per bitwise computation operation. We report the design of a new device, the rotary, which is a critical step towards developing universal computation gates in the scheme of synchronous reversible ballistic computation. Next, we turn to the consideration of anyons which have been predicted to enable topological quantum computing, a quantum computing paradigm that is relatively immune to environmental noise. We consider initial steps in the development of a Bethe ansatz solvable model that will help decipher the many-body properties of Majorana zero modes in superconducting Kitaev wires. </p>
|
540 |
Synthesis of Magnetic Ternary Chalcogenides and Their Magneto-Structural PropertiesRobert J Compton (13164669) 28 July 2022 (has links)
<p> </p>
<p>Magnetism plays a vital role in the technologies of today, and materials used for magnetic applications largely consist of solid state phases. Intermetallic chalcogenides are one such material which have exhibited a full range of properties useful for a variety of applications requiring soft magnets, superconductors, magnetocalorics, and even rarer magnetic phenomenon such as 1D Heisenburg magnetic chains. Solid state chemists continue to develop new synthesis methods for chalcogenides as they produce both new phases and modifications of existing phases, usually with the express intent of improving their physical and chemical properties. Low dimensional chalcogenides often have predictable structure-property relationships which when understood aids in these efforts of optimizing existing materials.</p>
<p>In this work, we have synthesized novel, low-dimensional Tl1-xAxFe3Te3 (A = K, Na)-based magnetocalorics for magnetic refrigeration technologies utilizing a variety of synthetic methods. Doping of alkali metals into the thallium site simultaneously reduces the toxicity and cost of the material, and also modifies their crystal structures leading to changes in their magnetic properties including ordering temperature, magnetic anisotropy, magnetic hysteresis, coercivity, and magnetic entropies. Most notably, the magnetic ordering temperature has been boosted from 220 K of the prior known TlFe3Te3 phase up to 233 K in the new Tl0.68Na0.32Fe2.76Te3.32 phase, further towards room temperature which is required for the commercialization of magnetic refrigerants for home appliances. There exist strong magnetostructural correlations for most of the alterations in the magnetic properties, and relationships have been modelled where trends exist to match the magnetism to the changes in the unit cell of the structure.</p>
<p>New synthetic methods were also developed for the ternary TBi4S7 (T = transition metal) phase which exhibits a pseudo-1D structure of Heisenberg antiferromagnetic chains. These synthetic techniques resulted in more consistent high purity of phases than methods reported previously in literature. Attempts at synthesizing new phases were made, and crystallographic and composition analysis methods suggested the synthesis of a new Mn1-xCoxBi4S7 phase, though magnetic impurities prevented characterization of this new material’s magnetic properties. </p>
|
Page generated in 0.0708 seconds