• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Resonance Imaging and Biochemical markers to assess disability in female subjects with Multiple Sclerosis.

Herbert, Estelle Penelope January 2016 (has links)
Thesis (M.Sc (Radiography))--Cape Peninsula University of Technology, 2016. / Multiple sclerosis (MS) affects the central nervous system (CNS) and is characterized by multiple demyelinating lesions. It is in this context that a need arises for reliable biomarkers such as Magnetic Resonance Imaging (MRI), which could lead to the early diagnosis and therapeutic intervention when maximum potential impact is possible. This study examines the impact of MRI as a marker and the sequences that give the best images to aid in evaluation of disease progression (which can indirectly be seen as disability) and the early diagnosis of MS which will, in turn, lead to more effective management of the disease. METHOD: Sixteen subjects underwent a neurological examination, the Expanded Disability Status Scale (EDSS), blood tests for iron parameters and a 3Tesla Magnetic Resonance Imaging (MRI) scan. In a study of MS, 11 had MRI data that could be analysed by using tract-based spatial statistics (TBSS). Subjects were divided according to the EDSS score (8 of the subjects had an EDSS score of ≤ 3 while 3 subjects had scores of ≥ 6). Diffusion tensor imaging (DTI), the fused Proton Density and Fluid Attenuation Recovery (FLAIR) was utilised to compute the lesion numbers and standard laboratory procedures were used to measure other biochemical markers (serum iron, % transferrin saturation, ferritin, haemoglobin) in subjects with disability and simultaneously assess the disease process. RESULTS: The FA of white matter tracts (WMTs) as a parameter of myelin integrity was lower in subjects with MS only in those who had high EDSS scores. An association between FA and iron parameters, especially percentage transferrin saturation (% Tf) sat were observed, which suggests that iron availability to the WM may be a requirement for optimal myelin functionality. CONCLUSION: The FA of WMTs as a parameter of myelin integrity was lower only in those MS subjects who had high EDSS scores. Subjects who had EDSS scores < 3 (i.e. who had a “benign” disease outcome) had FA values similar to control values and this finding was not related to their age or disease duration. The association found between FA and iron parameters, especially % Tf sat, suggests that iron availability to the WM may be a requirement for optimal myelin functionality. Results also suggest that serum iron concentration, ferritin and % Tf sat had an effect on myelination. The lack of association between FA and Hb suggests that the iron in this protein is not available for WM function.
2

Inhibitory mechanisms for visual learning in the human brain

Frangou, Polytimi January 2018 (has links)
Identifying targets in cluttered scenes is critical for our interactions in complex environments. Our visual system is challenged to both detect elusive targets that we may want to avoid or chase and discriminate between targets that are highly similar. These tasks require our visual system to become an expert at detecting distinctive features that help us differentiate between indistinguishable targets. As the human brain is trained on this type of visual tasks, we observe changes in its function that correspond to improved performance. We use functional brain imaging, to measure learning-dependent modulations of brain activation and investigate the processes that mediate functional brain plasticity. I propose that dissociable brain mechanisms are engaged when detecting targets in clutter vs. discriminating between highly similar targets: for the former, background clutter needs to be suppressed for the target to be recognised, whereas for the latter, neurons are tuned to respond to fine differences. Although GABAergic inhibition is known to suppress redundant neuronal populations and tune neuronal representations, its role in visual learning remains largely unexplored. Here, I propose that GABAergic inhibition plays an important role in visual plasticity through training on these tasks. The purpose of my PhD is to investigate the inhibitory mechanisms that mediate visual perceptual learning; in particular, learning to detect patterns in visual clutter and discriminate between highly similar patterns. I show that BOLD signals as measured by functional Magnetic Resonance Imaging (fMRI) do not differentiate between the two proposed mechanisms. In contrast, Magnetic Resonance Spectroscopy (MRS) provides strong evidence for the distinct involvement of GABAergic inhibition in visual plasticity. Further, my findings show GABA changes during the time-course of learning providing evidence for a distinct role of GABA in learning-dependent plasticity across different brain regions involved in visual learning. Finally, I test the causal link between inhibitory contributions and visual plasticity using a brain stimulation intervention that perturbs the excitation-inhibition balance in the visual cortex and facilitates learning.
3

Automatic Real-time Targeting of Single-Voxel Magnetic Resonance Spectroscopy

Storrs, Judd M. 06 December 2010 (has links)
No description available.
4

Samband mellan stress och smärta : en pilotstudie / Correlation between stress and pain : a pilot study

Bergström, Debora, Edman, Emma January 2022 (has links)
Bakgrund: Smärta definieras som en subjektiv upplevelse där upplevelsen till viss del formas i hjärnan genom komplexa processer. Långvarig stress har visat sig leda till förändring i smärtkänsligheten vilket kanske förklaras av att akut stress förändrar aktivitet i främre delar av hjärnan. Anterior cingulate cortex (ACC) är ett frontalt hjärnområde med en roll i den emotionella upplevelsen av smärta. Det finns indikationer på förändringar i ACC av den hämmande transmittorsubstansen GABA, och den stimulerande transmittorsubstansen glutamat, vid vissa smärttillstånd.  Motiv: I dagsläget saknas kunskap om hur stress påverkar smärtkänslighet samt hur det påverkar grundnivåerna av transmittorsubstanserna GABA och glutamat.  Syfte: Att studera samband mellan skattad stress och skattad smärta, samt studera samband mellan skattad stress, smärta, GABA och glutamat i två ACC regioner.  Metod: En experimentell pilotstudie med kvantitativ design utfördes med 10 friska deltagare. Percieved Stress Questionnaire användes för skattning av stressnivåer före smärtprovokation och Numeric Rating Scale användes för att skatta smärta vid smärtprovokation. GABA- och glutamatnivåer i två ACC regioner mättes med hjälp av Magnetic Resonans Spectroscopi.  Resultat: Spearmans test visade att det fanns ett signifikant positivt samband mellan skattad stress och skattad smärta (r=.86, p=.001). Det fanns även signifikant positivt samband mellan skattad stress och glutamat (r=.778, p=.008), skattad smärta och glutamat (r=.729, p=.017). Samt ett signifikant negativt samband mellan skattad stress och GABA (r= -.687, p=.028), skattad smärta och GABA (r=-.667, p=.035) i två ACC regioner.  Konklusion: Resultatet indikerar att sambandet mellan stress och smärta kan förklaras av förändringar i transmittorsubstansnivåer i två ACC regioner. Denna kunskap kan bidra till ökad förståelse hos vårdpersonalen för individuella skillnader i smärtkänslighet och hur komplex situationen kring patienter med smärta är, vilket motiverar till omvårdnadsåtgärder som minskar stress och smärta. / Background: Pain is defined as a subjective experience that some extent is formed through complex processes in the brain. Prolonged stress can affect pain sensitivity, which may be explained by changes in frontal parts of the brain. The anterior cingulate cortex (ACC) is a frontal brain area that plays a role in the emotional experience of pain. In certain pain conditions, there are indications of changes in the neurotransmitter level GABA and glutamate in ACC. Motive: At present, there is a lack of knowledge about how stress affects pain sensitivity and how it affects the basic levels of the neurotransmitter GABA and glutamate in ACC.  Aim: To study the correlation between rated stress and pain, and study the correlation between rated stress, pain, GABA, and glutamate in ACC.  Methods: An experimental pilot study was performed with 10 healthy participants. The Perceived Stress Questionnaire was used to rate stress levels before pain provocation and the Numeric Rating Scale was used to rate pain during pain provocation. GABA and glutamate levels were measured in ACC by Magnetic Resonance Spectroscopy.  Result: Spearman´s test showed a significant positive correlation between rated stress and rated pain (r = .86, p = .001). There was a significant positive relationship between rated stress and glutamate (r = .778, p = .008), rated pain and glutamate (r = .729, p = .017) and a significant negative correlation between rated stress and GABA (r = -.687, p = .028), rated pain and GABA (r = -.667, p = .035) in ACC.  Conclusion: The results indicate that the correlation between stress and pain can be explained by changes in transmitter levels in the ACC region. This knowledge can contribute to increased understanding among healthcare professionals for individual differences in pain sensitivity and the complexity of pain conditions.
5

Polarisation dynamique nucléaire à basse température et fort champ magnétique pour des applications biomédicales en imagerie spectroscopique par résonance magnétique / Dynamic nuclear polarization at low temperature and high magnetic field for biomedical applications in magnetic resonance spectroscopic imaging

Goutailler, Florent 26 January 2011 (has links)
Le travail de cette thèse a consisté à concevoir, réaliser et optimiser un montage expérimental de Polarisation Dynamique Nucléaire multi-échantillons pour des applications biomédicales en Imagerie Spectroscopique par Résonance Magnétique. Ce montage est constitué d'un aimant à fort champ magnétique (3,35T), dans lequel se place un système cryogénique à bain d'hélium (He4) liquide pompé pouvant atteindre des températures inférieures à 1,2K. Un ensemble d'inserts permet d'effectuer les différentes étapes du processus PDN dont l'irradiation des échantillons par un champ micro-onde (f=94GHz et P=50mW) et le suivi de leur polarisation par Résonance Magnétique Nucléaire. Ce système permet de polariser jusqu'à trois échantillons, de volume proche de 1mL, à des taux de polarisation de quelques pourcents. Il présente une forte autonomie supérieure à quatre heures, autorisant ainsi la polarisation de molécules à longues constantes de temps de polarisation. La possibilité de disposer quasi-simultanément, après dissolution, de plusieurs échantillons fortement polarisés ouvre la voie à de nouvelles applications dans le domaine de l'imagerie biomédicale / The aim of this thesis work was to design, build and optimize a large volume multisamples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35T) in which takes place a cryogenic system with a pumped bath of liquid helium (4He) allowing temperatures lower than 1,2K. A set of inserts is used for the different steps of DNP : irradiation of the sample by a microwave field (f=94GHz and P=50mW), polarization measurement by Nuclear Magnetic Resonance. . . With this system, up to three samples of 1mL volume can be polarized to a rate of few percents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasisimultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging
6

Modélisation et étude du métabolisme énergétique cérébral. Applications à l'imagerie des gliomes diffus de bas grade. / Modeling and analysis of the energetic cerebral metabolism. Applications to medical imaging of low-grade glioma. / Modellizzazione e analisi del metabolismo energetico del cervello. Applicazioni alle lastre mediche del glioma diffuso di basso grado

Perrillat-Mercerot, Angélique 22 October 2019 (has links)
Tout ce qui vit, naît, se nourrit, se reproduit et meurt. Pour le cerveau, la question se complexifie car à la survie des neurones s'ajoute le coût de l'activité cérébrale. La question de la gestion énergétique pour les neurones est particulière car les cellules de notre cerveau évoluent de manière concertée et non par compétition. On sait avec l'imagerie médicale que l'usine neuronale ne fonctionne pas uniquement grâce au glucose ; elle utilise d'autres apports énergétiques tels que le lactate ou le glutamate pour soutenir sa production. Lorsqu'une tumeur apparaît, elle change le métabolisme énergétique pour survivre et soutenir sa propre croissance. En particulier, les cellules cancéreuses se fournissent en lactate et choisissent leur substrat préféré en fonction de l'oxygène disponible. La modélisation mathématique des substrats énergétiques est un outil de choix pour décrire et prédire de tels flux. Coupler ces modèles à des données issues de l'IRM et de la SRM permet d'améliorer la prise en charge du patient présentant un gliome.Cette thèse propose l'approche de plusieurs dynamiques en substrat dans le cerveau sain et gliomateux en se basant sur des systèmes d'équations : échanges locaux en lactate (EDO, système lent-rapide), échanges globaux en substrats (EDO), cycle glutamate/glutamine (EDR) et échanges en lactate en dimensions supérieures (EDP). Ces modèles sont expliqués, décrits grâce aux mathématiques et permettent l'élaboration de simulations ajustées selon des données patient ou issues de la littérature.L'énergie est nécessaire au maintien de la vie. Mais si votre voisin consomme une partie de vos ressources, pouvez-vous encore espérer survivre ? / Everything that lives is born, eats, reproduces and dies. For the brain, the question is more complex because neurons have to survive and to support brain activity. Energy management is also particular because brain cells evolve together with no competition. Thanks to medical imaging, we know that neurons do not consume only glucose. They can use others energetic substrates such as lactate and glutamate as a power source.When a tumor appears, it changes the energetic metabolism to survive and support its own growth. In particular, cancer cells like to consume lactate. They also choose their favorite substrate based on the available oxygen. Modeling of energy substrates is useful to describe and predict energetic kinetics and changes. Mathematical models could get with clinical and medical results to describe, explain or predict low grade glioma dynamics. They can help to characterize and quantify a tumor evolution, then leading to improve their therapeutical management. Exchanges between mathematics and MRI (and MRS) enable to get accurate data and to build suitable mathematical models.This thesis deals with several approaches of substrates dynamics in healthy and gliomatous brains. These researches are based on systems of equations. We model local lactate exchanges (ODE, fast-slow systems), global substrates exchanges (ODE), glutamate/glutamine cycle (RDE) and local lactate exchanges in higher dimensions (PDE). We describe, analyze and give simulations of these models. Simulations are fitted on patient MRI data or literature data. Energy is necessary to live. But if your neighbor consumes a part of your resources, can you still survive ? / Tutto ciò che vive nasce, si nutre, si riproduce e muore. Per il cervello, la questione è più complessa perché i neuroni devono sopravvivere e sostenere l'attività cerebrale. La gestione energetica cerebrale è particolare anche perché le cellule cerebrali evolvono insieme, senza concorrenza. Inoltre, grazie alle immagini mediche, sappiamo che i neuroni non consumano solo del glucosio ma usano altri substrati energetici come il lattato o il glutammato.Quando un tumore si stabilisce, cambia il metabolismo energetico del cervello per sopravvivere e sostenere la propria crescita. In particolare, cellule tumorali consumano del lattato e scelgono il loro substrato preferito basandosi all'ossigeno disponibile.La matematica, e in particolare l'elaborazione di modelli matematici può aiutarci a ottimizzare i dati disponibili, che possono essere, di volta in volta, delle proprietà cellulare o delle lastre MRI o MRS. La modellizzazione dei substrati energetici potrebbe descrivere, spiegare o prevedere le dinamiche energetiche nel cervello.Questa tesi tratta di diversi approcci della dinamica dei substrati nei cervelli sani e gliomatosi. Queste ricerche si basano su sistemi di equazioni. Modellizziamo scambi locali di lattato (ODE, sistemi fast-slow), scambi globali di substrati (ODE), ciclo glutammato/glutammina (RDE) e scambi locali di lattato in dimensioni superiori (PDE). Descriviamo, analizziamo e diamo simulazioni di questi modelli. Le simulazioni sono adeguate su dati MRI paziente o dati di letteratura.Per vivere, l’energia è una necessità. Ma se i Suoi vicini consumassero le Sue risorse, riuscirebbe ancora a sopravvivere ?
7

Att utvärdera samband mellan subjektivt skattad smärta och transmittorsubstanser med magnetresonansspektroskopi : - En pilotstudie

Lundmark, Hanna, Yamamoto, Helya January 2022 (has links)
Att utvärdera samband mellan subjektivt skattad smärta och transmittorsubstanser med magnetresonansspektroskopi Bakgrund: Smärta är en komplex upplevelse, som involverar olika delar av hjärnan. Regionen anterior cingulate cortex (ACC) är kopplad till upplevelsen av smärta och delas in i ett flertal mindre regioner, till exempel den pregenuala regionen (pgACC) och dorsala regionen (dACC). För att studera olika metaboliter och transmittorsubstanser kan magnetresonansspektroskopi (MRS) användas. MRS och sekvensen MEGA-PRESS kan mäta specifika transmittorsubstanser såsom Gamma-AminoButyric Acid (GABA) och glutamin-glutamat (Glx).  Motiv: Det finns kunskapsluckor kring hur individens subjektiva smärtupplevelse i relation till transmittorsubstanser objektivt kan mätas och utvärderas.  Syfte: Att med MRS och MEGA-PRESS undersöka GABA+ och Glx-nivåer i hjärnområdena pgACC och dACC samt undersöka samband mellan smärtkänslighet och GABA+ och Glx i pgACC och dACC.  Metod: En kvantitativ, experimentell pilotstudie genomfördes med tio friska deltagare. Initialt skannades deltagarna i MRT och smärtstimulerades, sedan skattade de den upplevda smärtan med hjälp av Numeric Rating Scale. MRS och tekniken MEGA-PRESS användes för att mäta transmittorsubstansnivåerna.   Resultat: Studien visade att det fanns en statistiskt signifikant negativ korrelation mellan skattad smärtintensitet och uppmätta nivåer av GABA+ i pgACC (Spearman´s rho = -0,67; p = 0,04). Det fanns även ett statistiskt signifikant positivt samband mellan skattad smärtintensitet och uppmätta nivåer av Glx i dACC (Spearman´s rho =0,73; p=0,02). Vidare fanns signifikant skillnad i Glx mellan pgACC och dACC och en icke signifikant skillnad i GABA+.  Konklusion: Sammanfattningsvis visar resultatet att MRS och MEGA-PRESS kan kvantifiera transmittorsubstanser vid utvärdering av smärtkänslighet och att det finns en positiv korrelation mellan Glx och skattad smärtintensitet, samt en negativ korrelation mellan GABA+ och skattad smärtintensitet. Detta kan ge fördjupad insikt i individens smärtupplevelse och kan främja den individuella behandlingen. Genom att ta hänsyn till sambandet mellan smärta och transmittorsubstanser kan det bidra till ökad förståelse kring individens smärtupplevelse. / To evaluate the relation between subjectively estimated pain and neurotransmitters using magnetic resonance spectroscopy  Background: Pain is a complex experience that involves different parts of the brain. The region anterior cingulate cortex (ACC) is connected to the experience of pain and can be divided into several smaller areas, such as the pregenual region (pgACC) and the dorsal region (dACC). To study different metabolites and neurotransmitters, magnetic resonance spectroscopy (MRS) can be used. MRS and the sequence (MEGA-PRESS) can measure specific neurotransmitters such as Gamma-AminoButyric Acid (GABA) and glutamin-glutamate (Glx).  Motive: There are knowledge gaps about how the individual's subjective pain experience in relation to neurotransmitters can be objectively measured and evaluated.  Aim: Using MRS and MEGA-PRESS to examine levels of GABA+ and Glx in the brain regions pgACC and dACC and to examine the relationship between pain sensitivity and GABA+ and Glx in pgACC and dACC.  Methods: A quantitative, experimental pilot study was conducted which included ten healthy participants. The participants were initially scanned in the MRI and subjected to pain-stimulation, thereafter the participants rated the perceived pain using Numeric Rating Scale. MRS and the sequence MEGA-PRESS were used to quantify the neurotransmitters of interest.  Result: There was a significant, negative correlation between rated pain intensity and measured GABA+ levels in pgACC (Spearman´s rho = -0,67; p = 0,04). There was also a significant, positive correlation between rated pain intensity and measured levels of Glx in dACC (Spearman´s rho =0,73; p=0,02). Furthermore, there was a significant difference in Glx between pgACC and dACC as well as a non-significant difference in GABA+ between regions.  Conclusion: In summary, the result shows that MRS and MEGA-PRESS can quantify neurotransmitters when evaluating pain sensitivity and that there is a positive correlation between Glx and estimated pain intensity, and also a negative correlation between GABA+ and estimated pain intensity. This can provide a deeper insight into the individual’s pain experience and promote individual treatment. Further research regarding the meaning of the different brain regions when measuring neurotransmitters is recommended.

Page generated in 0.0167 seconds