• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 226
  • 136
  • 56
  • 2
  • Tagged with
  • 416
  • 255
  • 213
  • 148
  • 119
  • 119
  • 119
  • 58
  • 57
  • 50
  • 49
  • 45
  • 44
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Realstruktur de FeNbO 4 und elektronische Materialeigenschaften

Theissmann, Ralf. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--Darmstadt.
152

ESR and Magnetization Studies of Transition Metal Molecular Compounds

Aliabadi, Azar 26 January 2016 (has links) (PDF)
Molecule-based magnets (molecular magnets) have attracted much interest in recent decades both from an experimental and from a theoretical point of view, not only because of their interesting physical effects, but also because of their potential applications: e.g., molecular spintronics, quantum computing, high density information storage, and nanomedicine. Molecular magnets are at the very bottom of the possible size of nanomagnets. On reducing the size of objects down to the nanoscale, the coexistence of classical properties and quantum properties in these systems may be observed. In additional, molecular magnets exist with structural variability and permit selective substitution of the ligands in order to alter their magnetic properties. Therefore, these characteristics make such molecules suitable candidates for studying molecular magnetism. They can be used as model systems for a detailed understanding of interplay between structural and magnetic properties of them in order to optimize desired magnetic properties. This thesis considers the investigation of magnetic properties of several new transition metal molecular compounds via different experimental techniques (continuous wave electron spin resonance (CW ESR), pulse ESR, high-field/high-frequency ESR (HF-ESR) and static magnetization techniques). The first studied compounds were mono- and trinuclear Cu(II)-(oxamato, oxamidato)/bis(oxamidato) type compounds. First, all components of the g-tensor and the tensors of onsite ACu and transferred AN HF interactions of mononuclear Cu(II)- bis(oxamidato) compounds have been determined from CW ESR measurements at 10 GHz and at room temperature and pulse ELDOR detected NMR measurements at 35 GHz and at 20 K. The spin density distributions of the mononuclear compounds have been calculated from the experimentally obtained HF tensors. The magnetic exchange constants J of their corresponding trinuclear compounds were determined from susceptibility measurements versus temperature. Our discussion of the spin density distribution of the mononuclear compounds together with the results of the magnetic characterization of their corresponding trinuclear compounds show that the spin population of the mononuclear compounds is in interplay with the J values of their corresponding trinuclear compounds. The second studied compounds were polynuclear Cu(II)-(bis)oxamato compounds with ferrocene and ferrocenium ligands. The magnetic properties of these compounds were studied by susceptibility measurements versus temperature to determine J values. In addition, the ESR technique is used to investigate the magnetic properties of the studied compounds because they contain two different magnetic ions and because only the ESR technique can selectively excite different electron spin species. These studies together with geometries of the ferrocenium ligands determined by crystallographic studies indicate that the magnetic interaction between a central Cu(II) and a Fe(III) ions changed from the antiferromagnetic coupling to the ferromagnetic coupling when a stronger distortion of the axial symmetry in the feroccenium cation exists. Therefore, the degree of the distortion of the feroccenium cation is a control parameter for the sign of the interaction between the central Cu(II) ion and the Fe(III) spins of the studied compounds. The last two studied molecular magnets were a binuclear Ni(II) compound (Ni(II)-dimer) and a cube-like tetranuclear compound with a [Fe4O4]-cube core (Fe4-cube). HF-ESR measurements enabled us to determine the g-factor, the sign, and the absolute value of the magnetic anisotropy parameters. Using this information together with static magnetization measurements, the J value and the magnetic ground state of the studied compounds have been determined. In Ni(II)-dimer, two Ni(II) ions, each having a spin S = 1, are coupled antiferromagnetically that leads to a ground state with total spin Stot = 0. An easy plane magnetic anisotropy with a preferable direction for each Ni(II) ion is found. For Fe4-cube, a ground state with total spin Stot = 8 has been determined. The analysis of the frequency dependence and temperature dependence of HF-ESR lines reveals an easy axis magnetic anisotropy (Dcube = -22 GHz (-1 K)) corresponding to an energy barrier of U = 64 K for the thermal relaxation of the magnetization. These results indicate that Fe4-cube is favorable to show single molecular magnet (SMM) behavior.
153

Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

Stiller, Markus, Barzola-Quiquia, Jose, Esquinazi, Pablo, Spemann, Daniel, Meijer, Jan, Lorenz, Michael, Grundmann, Marius January 2016 (has links)
The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.
154

Untersuchung von magnetischen Dünnschichtsystemen mit Methoden der Röntgenbeugung

Richter, Kenneth 23 July 2009 (has links)
Dünne Eisen-Platin-Schichten sollen zukünftig in verbesserten magnetischen Speichermedien zum Einsatz kommen. Die Einflüsse einer zusätzlichen Kupferschicht sowie verschiedener RTA-Behandlungstemperaturen auf das FePt-Cu-Schichtsystem wurden mittels Röntgenbeugung und Röntgenreflektometrie untersucht.
155

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 07 October 2014 (has links)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
156

Nitridomanganates of alkaline-earth metals: Synthesis, structure, and physical properties

Ovchinnikov, Alexander 02 December 2016 (has links)
The main goal of the present work was the synthesis of alkaline-earth nitridomanganates (AExMnyNz) with extended anionic structures and the characterization of their electronic and magnetic properties. Up to now, only compounds with isolated nitridomanganate anions have been reported in the discussed ternary systems. A systematic exploratory synthesis, employing high-temperature treatment of AE nitrides and Mn under controlled N2 pressure, yielded more than ten new nitridomanganates. Their crystal structures contain anionic building blocks of different dimensionalities, ranging from isolated species to three-dimensional frameworks. In general, the formation of Mn-rich compositions was found to be driven by the emergence of Mn-Mn interactions, which creates a link between nitridometalates and transition-metal-rich binary nitrides. The obtained nitridomanganates display a plethora of interesting phenomena, such as large spin-orbit coupling, magnetic frustration, quenching of magnetism due to Mn-Mn interactions, and metal-insulator transition.
157

PAC investigations of ferromagnetic spinel semiconductors

Samohvalov, Veaceslav 25 July 2003 (has links)
The ternary spinel-type compounds CdCr2Se4, CdCr2S4, HgCr2Se4, and CuCr2Se4 with Cr as transition metal form a special group of ferromagnetic semiconductors with Curie temperatures up to 430 K. They have particular perspectives in spintronics due to the coexistence of semiconducting and ferromagnetic properties. In this work the ferromagnetic semiconductors were investigated by the hyperfine interactions of implanted nuclear probes using the PAC (perturbed angular correlations) spectroscopy. In such compounds both magnetic hyperfine fields (Bhf) and electric field gradients (efg) allow a detailed study of the behavior of probes, which can additionally represent essential doping atoms in these substances. Besides the popular 111In(111Cd), also 111mCd, 111Ag(111Cd), 77Br(77Se), 117Cd(117In), 199mHg, and 100Pd(100Rh) probes were used exploiting the unique possibilities at the ISOLDE on-line separator and implanter (CERN, Geneva, Switzerland). The main objective of these investigations was to examine the lattice site occupation and the behavior of the implanted probes. In addition, the experimental hyperfine fields were used as test quantities for modern ab initio calculations of the electronic and spin structure (WIEN97).
158

Struktureinstellung und magnetische Dehnung in polykristallinen magnetischen Ni-Mn-Ga – Formgedächtnislegierungen

Gaitzsch, Uwe 11 July 2008 (has links)
Magnetische Formgedächtnsilegierungen haben die besondere Fähigkeit, sich im äußeren Magnetfeld zu verformen. Dies geschieht aufgrund von Zwillingsgrenzenbewegung in der martensitischen Tieftemperaturphase. Da der Effekt bislang an Einkristallen untersucht wurde, ist es das Ziel dieser Arbeit, den Effekt an polykristallinen Proben nachzuweisen. Dafür wurden Proben nach dem Prinzip der gerichteten Erstarrung präpariert. Deren Kristallstruktur wurde durch geeignete Zusammensetzung und Wärmebehandlung einphasig eingestellt. Mechanisches Training und weitere Wärmebehandlungen ermöglichten schließlich die Demonstration der magnetischen Dehnung von ca. 1 % an polykristallinen Proben. Durch zusätzliche Einkopplung akustischer Wellen konnte die Dehnung auf 2,2 % gesteigert werden.
159

Neuaufbau eines Versuchsstandes zur Bestimmung magnetischer Eigenschaften von Werkstoffen

Trnka, Nikolaus, Werner, Ralf 22 September 2021 (has links)
In diesem Beitrag wird der Neuaufbau eines Versuchsstandes beschrieben, der zur Untersuchung magnetischer Eigenschaften von ferromagnetischen Werkstoffen dient. Angefangen bei der Notwendigkeit eines solchen Versuchsstandes werden der Aufbau, die Komponenten sowie die Besonderheiten beschrieben und erste Messergebnisse nach der Inbetriebnahme gezeigt. / This paper describes the new construction of a test bench used to investigate magnetic properties of ferromagnetic materials. Starting with the necessity of a test bench of this kind, the setup, the components and the special features are described and the first measurement results are shown after commissioning.
160

Structure and magnetocrystalline anisotropy of interlayer modified ultrathin epitaxial magnetite films on MgO(001)

Schemme, Tobias 27 January 2017 (has links)
In this thesis the influence of different growth conditions on the structural and the magnetic properties of magnetite were analyzed. Therefore, ultrathin Fe3O4 films were grown on MgO(001) substrates, on NiO, and on Fe pre-covered MgO(001) substrates. In the first part of this thesis magnetite films with different film thicknesses were deposited directly on MgO by RMBE to investigate the thickness dependence of the anomalous strain and the in-plane magnetic anisotropy. Surface sensitive methods like XPS and LEED have shown that all films in the investigated thickness range are stoichiometric and epitactic magnetite. Bulk sensitive XRD experiments at the specular rod point to well-ordered films with homogenous film thickness indicated by the distinct Laue oscillations. However, the vertical layer distances are smaller than expected even for strained magnetite. Raman measurements were carried out to clarify this contradiction between surface sensitive and bulk sensitive measurements. While the 20 nm and 30 nm films exhibit the typical bands for magnetite, no distinct bands can be observed for the 7.6 nm film. Due to this results we first assume a partial formation of a thin maghemite layer on top of the uncapped magnetite film under ambient conditions. Nevertheless, additional XPS measurement exclude the complete oxidation of magnetite to maghemite since there is no significantly increased Fe3+-signal visible. Thus, the low vertical layer distance can be attributed to the presence of APBs causing an anomalous strain relaxation as reported in literature. Although all films feature ferromagnetic behavior there are differences in the characteristic of the magnetic in-plane anisotropy. The 7.6 nm film has an in-plane magnetic isotropy while the 20 nm and 30 nm film have an in-plane fourfold magnetic anisotropy. Here, the fourfold magnetic anisotropy is stronger for the 20 nm magnetite film than for the 30 nm film. The critical film thickness for the transition from magnetic isotropy to magnetic fourfold anisotropy may be influenced by film thickness and lattice strain induced by the substrate. The second part of this thesis features the thickness dependence of the structural quality of Fe3O4/NiO bilayers. Each film of the Fe3O4/NiO bilayer on MgO(001) have been successfully grown by RMBE. LEED and XPS experiments have proven that the surface near regions of the distinct films have high structural and stoichiometric properties. Here, too, the detailed ’bulk’ structural characterization of Fe3O4/NiO bilayers were carried out using XRD. It was shown that the Fe3O4 films grow homogeneously and smoothly on NiO films if the NiO film thickness is below 24 nm. Above this NiO film thickness the structural quality of the magnetite films gets distinctly worse. This behavior can be attributed to the fact that the interface roughness between NiO and Fe3O4 depends on the NiO film thickness. The roughness of the 3 nm NiO film is rather small and it is rising obviously with increasing NiO film thickness. Thus, the structural quality of the magnetite films grown on 30 nm NiO films is constantly reduced with increasing magnetite film thickness since the quality of the Fe3O4 films is influenced by the quality of the Fe3O4/NiO interface. In the third study the influence of initial iron buffer layers on the magnetic properties of magnetite grown on MgO(001) substrates has been investigated. In situ XPS and LEED indicate that the structural and stoichiometric properties of the surface near region of the magnetite films are not influenced by the iron buffer layer. However, the structural and magnetic properties of the whole film have changed compared to magnetite grown directly on MgO as shown by XRD and MOKE. The crystalline quality is poor and the magnetic easy axis of the magnetic in-plane anisotropy is rotated by 45◦ compared to magnetite films grown directly on MgO. Both crystalline quality and the rotation of the magnetic in-plane anisotropy show no dependence on the film thickness. However, the strength of the magnetocrystalline anisotropy decreases with increasing film thickness. XPS and XRD measurements have indicated that the iron buffer layer is completely oxidized during the second growth stage of the magnetite. The small Kerr rotation in the MOKE experiments of the samples with film thicknesses up to 28 nm confirms this result since a remaining iron film would cause a higher Kerr rotation. In the last part of this thesis the structural and magnetic properties of a partially oxidized, a completely oxidized and a metallic iron film are analyzed. The partially oxidized iron film is a bilayer with a metallic iron film and an iron oxide film. The surface near stoichiometry of both oxidized iron films correspond to magnetite as proven by XPS. The structural analysis by XRD reveals that though these magnetite films are crystalline, they have an inhomogeneous thickness. The magnetization curves of the partially oxidized film (bilayer) measured by MOKE exhibit a magnetic saturation which is comparable to the magnetic saturation of the single metallic iron film. However, the coercive field is higher compared to the single metallic iron film due to the high interface roughnesses. Considering the coercive field as a function of the sample rotation α the bilayer exhibits a fourfold anisotropy with eight maxima. However, the angular dependence of the magnetic remanence features a simple fourfold anisotropy with easy axes in h110i directions of MgO(001). Vector MOKE analysis displays that the magnetic reversal processes of the bilayer are similar to single metallic iron films. Thus, the bilayer exhibits mostly the magnetic properties of a single iron film. The bilayer has the same magnetic easy axis and a similar magnetic saturation. The magnetic easy axis of the magnetic in-plane anisotropy of the completely oxidized iron film is rotated by 45◦ compared to magnetite films grown directly on MgO as already observed in Ref. [148]. The completely oxidized iron film exhibits also a significantly increased coercive field due to high surface roughness. A magneto-dynamic investigation of the exchange-coupling of the Fe3O4/Fe bilayer system was carried out to yield all relevant magnetic parameters, such as anisotropies, as well as the coupling constant J1. Here, also a complex fourfold anisotropy was observed, which might be due to a coupling of a perpendicular spin-wave mode in the magnetite layer with the acoustical coupling mode. We have also successfully calculated the angular dependence of the resonance field of all films using the eighth order of the magnetocrystalline anisotropy. Although we have applied many measurement methods, we have found no explanation for the complex fourfold angular dependence of the coercive field of the bilayer. Nevertheless, this bilayer provides interesting properties for application in MTJs due to its enhanced magnetic properties like complex fourfold magnetic anisotropy and higher coercive field and remanence. All in all, we have shown that the structural and magnetic properties of magnetite films are strongly influenced by interlayers between film and substrate. While magnetite films directly deposited on MgO exhibit a homogeneous film thickness, both NiO interlayers with a thickness above 24 nm and initially grown iron films deteriorate the structural quality of the on top grown magnetite films. In addition, the magnetic fourfold anisotropy is rotated by 45◦ in comparison to magnetite films grown directly on MgO for the structurally disturbed magnetite on iron pre-covered MgO substrates. Here, further investigations are necessary to understand why this anisotropy rotation occurs and how we can improve the structural quality of magnetite on iron and NiO. The growth of magnetite by oxidizing previously deposited iron films leads to crystalline magnetite films but with inhomogeneous film thicknesses. In case of a Fe3O4/Fe bilayer, the magnetic properties are drastically changed due to the magnetic coupling between the iron and the magnetite film.

Page generated in 0.064 seconds