• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 16
  • 1
  • Tagged with
  • 44
  • 44
  • 30
  • 28
  • 26
  • 24
  • 20
  • 19
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Charakterisierung elektronischer und magnetischer Eigenschaften in Seltenen Erd-Borkarbiden / Characterisation of electronic and magnetic properties in Rare Earth-Borocarbides

Krug, Klaus 21 June 2000 (has links)
No description available.
12

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 20 October 2011 (has links) (PDF)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.
13

Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

Güttler, Monika, Generalov, Alexander V., Otrokov, M. M., Kummer, K., Kliemt, Kristin, Fedorov, Alexander, Chikina, Alla, Danzenbächer, Steffen, Schulz, S., Chulkov, Evgenii Vladimirovich, Koroteev, Yury Mikhaylovich, Caroca-Canales, Nubia, Shi, Ming, Radovic, Milan, Geibel, Christoph, Laubschat, Clemens, Dudin, Pavel, Kim, Timur K., Hoesch, Moritz, Krellner, Cornelius, Vyalikh, Denis V. 16 January 2017 (has links) (PDF)
Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.
14

Topological defect-induced magnetism in a nanographene

Mishra, Shantanu, Beyer, Doreen, Berger, Reinhard, Liu, Junzhi, Gröning, Oliver, Urgel, José I., Müllen, Klaus, Ruffieux, Pascal, Feng, Xinliang, Fasel, Roman 13 January 2021 (has links)
The on-surface reactions of 10-bromo-10'-(2,6-dimethylphenyl)-9,9'-bianthracene on Au(111) surface have been investigated by a combination of bond-resolved scanning tunneling microscopy, scanning tunneling spectroscopy, and tightbinding and mean-field Hubbard calculations. The reactions afford the synthesis of two open-shell nanographenes (1a and 1b) exhibiting different scenarios of all-carbon magnetism. 1a, an allbenzenoid nanographene with previously unreported triangulenelike termini, contains a high proportion of zigzag edges, which endows it with an exceedingly low frontier gap of 110 meV and edge-localized states. The dominant reaction product (1b) is a non-benzenoid nanographene consisting of a single pentagonal ring in a benzenoid framework. The presence of this nonbenzenoid topological defect, which alters the bond connectivity in the hexagonal lattice, results in a non-Kekulé nanographene with a spin S = ½, which is detected as a Kondo resonance. Our work provides evidence of all-carbon magnetism, and motivates the use of topological defects as structural elements toward engineering agnetism in carbon-based nanomaterials for spintronics.
15

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 18 August 2011 (has links)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.
16

Electron spin resonance (ESR) spectroscopy of low-dimensional spin systems

Arango, Yulieth Cristina 29 April 2011 (has links)
The research in low-dimensional (low-D) quantum spin systems has become an arduous challenge for the condensed matter physics community during the last years. In systems with low dimensional magnetic interactions the exchange coupling is restricted to dimensions lower than the full three-D exhibited by the bulk real material. The remarkable interest in this field is fueled by a continuous stream of striking discoveries like superconductivity, quantum liquid and spin gap states, chiral phases, etc, derived from the strong effect of quantum fluctuations on the macroscopic properties of the system and the competition between electronic and magnetic degrees of freedom. The main goal of the current studies is to reach a broad understanding of the mechanisms that participate in the formation of those novel ground states as well as the characteristic dependence with respect to relevant physical parameters. In this thesis we present the results of an Electron Spin Resonance (ESR)-based study on different quasi-1D spin systems, exemplifying the realization of 1D-magnetic spin-chains typically containing transition metal oxides such as Cu2+ or V4+. The local sensitivity of the ESR technique has been considered useful in exploring magnetic excitation energies, dominant mechanisms of exchange interactions, spin fluctuations and the dimensionality of the electron spin system, among others. Aside from ESR other experimental results, e.g., magnetization and nuclear magnetic resonance besides some theoretical approaches were especially helpful in achieving a proper understanding and modeling of those low-D spin systems. This thesis is organized into two parts: The first three chapters are devoted to the basic knowledge of the subject. The first chapter is about magnetic exchange interactions between spin moments and the effect of the crystal field potential and the external magnetic field. The second chapter is a short introduction on exchange interactions in a 1D-spin chain, and the third chapter is devoted to ESR basics and the elucidation of dynamic magnetic properties from the absorption spectrum parameters. The second part deals with the experimental results. In the fourth chapter we start with the magnetization results from the zero-dimensional endohedral fullerene Dy3N@C80. This system is seemingly ESR “silent” at the frequency of X-band experiments. The fifth chapter shows an unexpected temperature dependence of the anisotropy in the homometallic ferrimagnet Na2Cu5Si4O14 containing alternating dimer-trimer units in the zig-zag Cu-O chains. In the sixth chapter different magnetic species in the layer structure of vanadium oxide nanotubes (VOx-NT) have been identified, confirming earlier magnetization measurements. Moreover the superparamagnetic-like nature of the Li-doped VOx-NT samples was found to justify its ferromagnetic character at particular Li concentration on the room temperature scale. In the seventh chapter the Li2ZrCuO4 system is presented as a unique model to study the influence of additional interactions on frustrated magnetism. The eighth chapter highlights the magnetic properties of the pyrocompound Cu2As2O7. The results suggest significant spin fluctuations below TN. The thesis closes with the summary and the list of references.
17

Crystal Growth, Structure, and Noninteracting Quantum Spins in Cyanochroite, K₂Cu(SO₄)₂·6H₂O

Peets, Darren C., Avdeev, Maxim, Rahn, Marein C., Pabst, Falk, Granovsky, Sergey, Stötzer, Markus, Inosov, Dmytro S. 04 June 2024 (has links)
The rare mineral cyanochroite, K2Cu(SO4)2·6H2O, features isolated Cu2+ ions in distorted octahedral coordination, linked via a hydrogen-bond network. We have grown single crystals of cyanochroite as large as ∼0.5 cm3 and investigated structural and magnetic aspects of this material. The positions of hydrogen atoms deviate significantly from those reported previously based on X-ray diffraction data, whereas the magnetic response is fully consistent with free Cu2+ spins. The structure is not changed by deuteration. Density functional theory calculations support our refined hydrogen positions.
18

Benzo-Extended Cyclohepta[def]fluorene Derivatives with Very Low-Lying Triplet States

Wu, Fupeng, Ma, Ji, Lombardi, Federico, Fu, Yubin, Liu, Fupin, Huang, Zhijie, Liu, Renxiang, Komber, Hartmut, Alexandropoulos, Dimitris I., Dmitrieva, Evgenia, Lohr, Thorsten G., Israel, Noel, Popov, Alexey A., Liu, Junzhi, Bogani, Lapo, Feng, Xinliang 22 April 2024 (has links)
Open-shell non-alternant polycyclic hydrocarbons (PHs) are attracting increasing attention due to their promising applications in organic spintronics and quantum computing. Herein we report the synthesis of three cyclohepta[def]fluorene-based diradicaloids (1–3), by fusion of benzo rings on its periphery for the thermodynamic stabilization, as evidenced by multiple characterization techniques. Remarkably, all of them display a very narrow optical energy gap (Egopt=0.52–0.69 eV) and persistent stability under ambient conditions (t1/2=11.7–33.3 h). More importantly, this new type of diradicaloids possess a low-lying triplet state with an extremely small singlet–triplet energy gap, as low as 0.002 kcal mol−1, with a clear dependence on the molecular size. This family of compounds thus offers a new route to create non-alternant open-shell PHs with high-spin ground states, and opens up novel possibilities and insights into understanding the structure–property relationships.
19

Gefügebildung und Verdichtungsvorgänge bei weichmagnetischen Ferriten / Formation of Microstructure and Densification Process in Softmagnetic Ferrites

Dreikorn, Jörg 08 November 2005 (has links)
No description available.
20

Current-Induced Excitations in Ferromagnetic Single Layer and Trilayer Nanodevices / Spinstrominduzierte Anregungen in nanostrukturierten ferromagnetischen Einfach- und Dreifachlagen

Parge, Anne 23 March 2007 (has links)
No description available.

Page generated in 0.0896 seconds