• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 28
  • 13
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 53
  • 52
  • 50
  • 36
  • 29
  • 29
  • 20
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Synthesis of Magnetic Ternary Chalcogenides and Their Magneto-Structural Properties

Robert J Compton (13164669) 28 July 2022 (has links)
<p>  </p> <p>Magnetism plays a vital role in the technologies of today, and materials used for magnetic applications largely consist of solid state phases. Intermetallic chalcogenides are one such material which have exhibited a full range of properties useful for a variety of applications requiring soft magnets, superconductors, magnetocalorics, and even rarer magnetic phenomenon such as 1D Heisenburg magnetic chains. Solid state chemists continue to develop new synthesis methods for chalcogenides as they produce both new phases and modifications of existing phases, usually with the express intent of improving their physical and chemical properties. Low dimensional chalcogenides often have predictable structure-property relationships which when understood aids in these efforts of optimizing existing materials.</p> <p>In this work, we have synthesized novel, low-dimensional Tl1-xAxFe3Te3 (A = K, Na)-based magnetocalorics for magnetic refrigeration technologies utilizing a variety of synthetic methods. Doping of alkali metals into the thallium site simultaneously reduces the toxicity and cost of the material, and also modifies their crystal structures leading to changes in their magnetic properties including ordering temperature, magnetic anisotropy, magnetic hysteresis, coercivity, and magnetic entropies. Most notably, the magnetic ordering temperature has been boosted from 220 K of the prior known TlFe3Te3 phase up to 233 K in the new Tl0.68Na0.32Fe2.76Te3.32 phase, further towards room temperature which is required for the commercialization of magnetic refrigerants for home appliances. There exist strong magnetostructural correlations for most of the alterations in the magnetic properties, and relationships have been modelled where trends exist to match the magnetism to the changes in the unit cell of the structure.</p> <p>New synthetic methods were also developed for the ternary TBi4S7 (T = transition metal) phase which exhibits a pseudo-1D structure of Heisenberg antiferromagnetic chains. These synthetic techniques resulted in more consistent high purity of phases than methods reported previously in literature. Attempts at synthesizing new phases were made, and crystallographic and composition analysis methods suggested the synthesis of a new Mn1-xCoxBi4S7 phase, though magnetic impurities prevented characterization of this new material’s magnetic properties. </p>
102

Étude des phases onde de densité de spin induites par le champ magnétique dans les conducteurs organiques quasi-unidimensionnels : rôle du désordre

TSOBNANG, François 13 December 1991 (has links) (PDF)
Le rôle du désordre sur les phases onde de densité de spin induites par le champ magnétique (ODSIC) a été étudié sur un monocristal de (TMTSF)2ClO4. Les propriétés à basse température de ce conducteur organique quasi-unidimensionnel dépendent de la vitesse de refroidissement au passage de la transition de mise en ordre des anions qu'il subit à 24 kelvins. Nous avons utilisé cet effet de cinétique pour contrôler le taux de désordre dans l'échantillon. Nos investigations ont été effectuées à l'aide de mesures calorimétriques: d'une part, des mesures simultanées de la chaleur spécifique et de l'effet magnétocalorique en champ variable, et d'autre part, des mesures de la chaleur spécifique en champ fixe. Nous avons mis en évidence un nouveau comportement multicritique en un point de la ligne de transition du second ordre, qui sépare la phase métallique et les sous-phases ODSIC. La criticité de ce point passe de "tétracritique" à bicritique lorsque le désordre augmente. Le point "tétracritique" peut être interprété comme le résultat de la superposition de deux sous phases-ODSIC adjacentes. Nous rapportons aussi un effet de dépairage de paires électron-trou induit par le désordre non magnétique Ce dépairage diffère du comportement universel. De plus l'écart par rapport à ce dernier dépend du champ magnétique. Enfin il n'est pas monotone en fonction du champ. Par ailleurs, les mesures que nous avons effectuées montrent que la mise en ordre des anions n'influence pas directement les réentrances partielles de l'état métallique dans les sous-phases ODSIC entre 3 et 7 teslas. Ceci permet de penser que, dans ce domaine de champs magnétiques, la bande interdite ouverte dans le spectre d'énergie du fait de la mise en ordre des anions ne serait pas directement responsable des réentrances.
103

Nouveaux matériaux magnétocaloriques à base de terres rares pour la réfrigération magnétique / New rare earth-based magnetocaloric materials for magnetic refrigeration

Mayer, Charlotte 29 September 2011 (has links)
Les travaux présentés dans ce manuscrit portent sur la synthèse et la caractérisation de nouveaux matériaux magnétocaloriques à basse de terres rares pour la réfrigération magnétique. Le premier chapitre constitue une introduction aux notions d’effet magnétocalorique et de réfrigération magnétique et dresse un état de l’art des matériaux magnétocaloriques existants. Dans le but d’obtenir des matériaux à forte capacité de réfrigération (RC) et d’identifier des stratégies d’amélioration de ce critère de performance, deux voies de recherche ont été explorées : l’élargissement de la transition magnétique et l’effet de l’élément de transition M et de l’élément p (X) dans les verres métalliques Gd60M30X10 (M = Mn, Fe, Co, Ni, Cu et X = Al, Ga, In) d’une part, et la synthèse de nouveaux siliciures ternaires dans les systèmes R-M-Si (R = Nd, Gd, Tb et M = Co, Ni) à fort potentiel magnétocalorique, d’autre part.Le second chapitre de cette thèse présente les propriétés magnétiques des rubans amorphes à base de gadolinium synthétisés par la technique de melt-spinning, dans lesquels le désordre structural induit un très fort élargissement de la transition magnétique (vis-à-vis de celle du gadolinium par exemple). Il montre dans un premier temps, la faible influence de l’élément p (X) sur les propriétés magnétiques des rubans Gd60Mn30X10 (X = Al, Ga, In). Une seconde partie présente la très forte influence de l’élément de transition M, tant sur la nature de la transition magnétique que sur les propriétés magnétocaloriques des verres métalliques Gd60M30In10 (M = Mn, Fe, Co, Ni, Cu), avec en particulier une température de Curie variant entre 86 (M = Ni) et 220 K (M = Fe) et l’existence d’un phénomène de type cluster-glass en dessous de 35 K lorsque M = Mn. Le chapitre trois de cette thèse se décline en trois parties. La première décrit les conditions de synthèse parfois délicates, notamment dans le choix des températures de recuit, des siliciures R5MSi2, Gd5Si3 et du composé à domaine d’existence Gd3Co2,5 ± xSi1,5 ± y. L’utilisation de la méthode Rietveld pour l’affinement des diffractogrammes de rayons X sur poudre et monocristaux et neutrons a permis de montrer que les composés R5MSi2 adoptent une structure de type Cr5B3 avec la particularité de l’occupation mixte du site 8h par Co et Si à 50 %/50 % et que Gd3Co2,5 ± xSi1,5 ± y adopte une structure de type Er3Ge4 avec des sites mixtes Co/Si en positions 4a et 4c. La seconde partie présente les propriétés magnétiques et magnétocaloriques du siliciure Gd5CoSi2. Ce composé subit une transition ferromagnétique à la température de Curie de 169 K qui s’accompagne d’une variation d’entropie magnétique calculée par l’application de la relation de Maxwell, de -4,7 et 8,7 J kg-1 K-1 pour des variations de champ magnétique respectives de 2 et 5 T. Le troisième volet de ce chapitre décrit les propriétés magnétiques de Nd5CoSi2 et Nd5NiSi2 qui présentent une transition ferromagnétique respectivement à 55 et 44 K. Il décrit également l’affinement de la structure ferromagnétique cantée de Nd5CoSi2 obtenue par des mesures de diffraction neutronique.Il ressort de ces travaux que l’évaluation des matériaux magnétocaloriques par le seul critère de capacité de réfrigération ne mène pas vers les matériaux les plus adaptés à l’application. Il faudrait cibler plus spécifiquement, pour chaque type de cycle de réfrigération envisagé, des critères pragmatiques tels qu’une fenêtre de température d’utilisation autour de la température de Curie ou une valeur de chaleur spécifique optimale afin de mieux guider la recherche de nouveaux matériaux magnétocaloriques. / The studies presented in this manuscript deal with the synthesis and characterization of new rare-earth based magnetocaloric materials for magnetic refrigeration applications. The first chapter is an introduction to the concepts of magnetocaloric effect and magnetic refrigeration and establishes a review of the magnetocaloric materials existing today. Two research axes were explored in order to obtain materials with a high refrigeration capacity (RC) and to identify strategies for improving this performance criterion: the enlargement of magnetic transition and the effect of transition element M and p-element X in the metallic glasses Gd60M30X10 (M = Mn, Fe, Co, Ni, Cu et X = Al, Ga, In) on one hand, and the synthesis of new ternary silicides in the RE-M-Si systems (RE = Nd, Gd, Tb et M = Co, Ni) with high magnetocaloric potential on the other hand. The second chapter of this thesis presents the magnetic properties of Gd-based amorphous ribbons synthesized by the melt-spinning technique, in which the structural disorder induces a very strong enlargement of the magnetic transition (compared to that of pure Gd for instance). In a first part, it shows the weak influence of the p element (X) on the magnetic properties of Gd60Mn30X10 (X = Al, Ga, In) ribbons. A second part presents the very strong influence of the transition element M, either on the nature of the magnetic transition and on the magnetocaloric properties of Gd60M30In10 (M = Mn, Fe, Co, Ni, Cu) metallic glasses with, in particular, a Curie temperature varying between 86 (M = Ni) and 220 K (M = Fe) and the occurrence of a cluster-glass behavior below 35 K when M = Mn. The third chapter of this thesis is composed of three parts. The first one describes the synthesis conditions of RE5MSi2 (RE = Nd, Gd, Tb), Gd5Si3 and of the compound with existence domain Gd3Co2.5 ± xSi1.5 ± y. These syntheses are sometimes delicate, particularly in the choice of annealing temperatures. The use of the Rietveld method to refine the X-ray and neutron powder diffraction patterns allowed showing that RE5MSi2 compounds adopt a Cr5B3 type structure, with a mixed occupation of 8h site by Co and Si at 50 %/50 % and that Gd3Co2.5 ± xSi1.5 ± y adopts an Er4Ge4 type structure with mixed Co/Si occupation in 4a et 4c positions. The second part presents the magnetic and magnetocaloric properties of the Gd5CoSi2 silicide. This compound exhibits a ferromagnetic transition at the Curie temperature TC = 169 K that is accompanied by a magnetic entropy change of -4.7 and 8.7 kg-1 K-1 at 2 and 5 T, respectively, as calculated by the application of Maxwell’s relationship. The third part is this chapter describes the magnetic properties of Nd5CoSi2 and Nd5NiSi2 which order ferromagnetically at 55 and 44 K, respectively. It also presents the refinement of the canted ferromagnetic structure on Nd5CoSi2, obtained by neutron diffraction measurements.These study show that evaluating the magnetocaloric materials by only considering the criterion of refrigeration capacity does not lead to the elaboration of the best materials for the applications. It could be more efficient to target more pragmatic criteria, for each considered refrigeration cycle, such as a temperature window of use around the Curie temperature or an optimal specific heat value in order to lead the research of new magnetocaloric materials at best.
104

Crystal structure, martensitic transformation crystallography, mechanical and magnetocaloric performance of Ni(Co)MnIn multifunctional alloys / Structure cristalline, cristallographie de transformation martensitique, performances mécaniques et magnétocaloriques de l'alliage multifonctionnel Ni(Co)MnIn

Yan, Haile 29 July 2016 (has links)
Les alliages à base de Ni-Mn-In ont attiré une attention considérable en raison de leurs propriétés multifonctionnelles depuis leur découverte en 2004, telles que l’effet de mémoire de forme métamagnétique (Metamagnetic shape memory effect MMSME), l'effet magnétocalorique (MCE) et l'effet de magnétorésistance (MR). Cependant, certaines connaissances fondamentales sur ces alliages manquent toujours jusqu'à présent, telles que la structure cristalline de la martensite, les caractéristiques cristallographiques de microstructure et de transition magnétostructurale. Dans cette thèse, les caractéristiques cristallographiques, les comportements mécaniques et les propriétés magnétiques des alliages Ni-Mn-In base ont été étudiés théoriquement et expérimentalement. Tout d'abord, les structures cristallines des alliages Ni-Mn-In ont été déterminées avec précision par la méthode de Rietveld dans le cadre de la théorie du superespace. Ensuite, la microstructure de la martensite, notamment l'organisation et l'interface des variantes, ainsi que les caractéristiques cristallographiques de la transformation martensitique, telles que les relations d'orientation (OR), le chemin de déformation de la transformation et la compatibilité géométrique entre l'austénite et la martensite, ont été systématiquement étudiés. Enfin, avec cette connaissance fondamentale sur les alliages Ni-Mn-In, les comportements et les mécanismes de sélection /réarrangement des variantes de martensite sous deux types de stratégies de chargement mécanique, à savoir le chargement à l'état martensitique et le chargement durant la transition structurelle, et les effets du recuit sur l'effet MCE et les pertes d'hystérésis associées ont été explorées. Les principaux résultats sont les suivants. La martensite modulé a une structure cristalline incommensurable avec la structure cristalline 6M et le groupe de superespace I2/m(α0γ)00 qui peut être approximée par un modèle de superstructure de multiplicité 3 dans l'espace à tridimensionnel. La microstructure de martensite est en forme de plaques et auto-organisée en colonies. Chaque colonie a quatre variantes d'orientations distinctes. Le maximum de 6 colonies distinctes et 24 variantes peut être généré à l'intérieur d'un grain austénitique. Bien que jusqu'à 14 types de relations de maclage sont proposées dans le cadre des théories cristallographiques de transformation martensitique, seuls trois types de relations de maclage sont généralement observés, à savoir des macles de type I, type II et composées. Les interfaces des variantes sont définies à l'échelle mésoscopique par leur plan de maclage K1 correspondant. Cependant, à l'échelle atomique, la macle de type I a une interface cohérente, alors que celles de type-II et les macles composées ont des interfaces étagées. Les deux relations d'orientations K-S et Pitsch sont appropriés pour décrire la correspondance de réseau entre austénite et martensite dans les alliages Ni-Mn-In. Cependant, le chemin de déformation lié à la relation de Pitsch est mis en évidence pour être efficace pour la déformation de la structure. Avec le chemin de transformation déterminé, le mécanisme sous-jacent de l'organisation des variantes est révélé. À travers la transformation martensitique, en dépit de l'existence d'une relativement large couche contrainte (de l'ordre de 20 nm), le plan d'habitat est bordé par une variante de martensite simple avec l'austénite plutôt que la structure généralement observée "en sandwich", ce qui suggère une relativement bonne compatibilité géométrique entre les phases correspondantes. Pour le chargement en compression à l'état martensitique, l'arrangement des variantes est réalisé par des processus de démaclage. Il est démontré que l'état de variante unique dans certaines colonies pourrait être obtenu lorsque l'orientation de chargement est située dans la zone de Facteur de Schmid (SF) positif commune pour les trois systèmes de démaclage. [...] / Ni-Mn-In based alloys have attracted considerable attention due to their multifunctional properties since its discovery in 2004, such as metamagnetic shape memory effect (MMSME), magnetocaloric effect (MCE) and magnetoresistance (MR) effect. However, some fundenmental knowledge on these alloys is still missing until now, such as crystal structure of martensite, crystallographic features of microstructure and magnetostructural transition. In this dissertation, the crystallographic features, mechanical behaviors and magnetic properties of Ni-Mn-In based alloys were studied theoretically and experimentally. First, the crystal structures of Ni-Mn-In alloys were accurately determined by Rietveld method in the frame of superspace theory (Chapter 3). Then, the microstructure of martensite (Chapter 4), such as variant organization and interface structure, and the crystallographic features of martensitic transformation, such as orientation relationship (OR), transformation strain path and geometrical compatibility between austenite and martensite, were systematically studied (Chapter 5). Finally, with this fundamental knowledge on Ni-Mn-In alloys, the behaviors and mechanisms of martensite variant rearrangement/ selection under two kinds of mechanical loading strategies, i.e. loading at martensite state and loading across the structural transition, and the effects of annealing on MCE and its related hysteresis loss were explored (Chapter 6). The main results are as follows. The modulated martensite has an incommensurate 6M crystal structure with superspace group I2/m(α0γ)00 that can be approximated by a three-fold superstructure model in the three-dimensional space. The microstructure of martensite is in plate shape and self-organized in colonies. Each colony has four distinct orientation variants. The maximum of 6 distinct colonies and 24 variants can be generated within one austenite grain. Although as many as 14 kinds of twin relations are suggested in the frame of crystallographic theories of martensitic transformation, only three types of twin relations are generally detected, i.e. type-I, type-II and compound twin. Variant interfaces are defined by their corresponding twinning plane K1 at mesoscopic scale. However, at atomic scale, the type-I twin has a coherent interface, whereas type-II and compound twins have “stepped” interfaces. Both the K-S and Pitsch ORs are appropriate to describe the lattice correspondence between austenite and martensite in Ni-Mn-In alloys. However, the strain path related to the Pitsch relation is evidenced to be the effective for the structural distortion. With the determined transformation path, the underlying mechanism of variant organization is revealed. Across the martensitic transformation, despite the existence of a relative wide stressed layer (around 20 nm), the habit plane is bordered by single martensite variant with austenite rather than the generally observed “sandwich-like” structure, implying a relative good geometrical compatibility between the corresponding phases. For compressive loading at martensite, variant arrangement is realized by the detwinning process. It is evidenced that a single variant state in some colonies can be obtained when the loading orientation is located in the common positive Schmid factor (SF) zone of the three detwinning systems. For loading across the structural transition, the prestrain is obtained by variant selection in which the number of colonies is significantly reduced and the variant organization within colony is greatly changed. The SF for transformation strain path is introduced to evaluate the possible selection of variants. Heat treatment can significantly enhance the magnetic entropy change ΔSM but simultaneously increase the magnetic hysteresis loss. For ΔSM, the chemical ordered degree should play a prominent role [...]
105

Matériaux multicaloriques : Application à de nouveaux systèmes de refroidissement / Multicalorics materials : Application for new cooling systems

Russo, Florence 05 November 2015 (has links)
Le domaine du refroidissement est en constante expansion, le système actuel est basé sur la compression/décompression des fluides. Face aux problèmes environnementaux et économiques que ce système présente (natures des fluides frigorigènes et leurs recyclages, nuisances sonores et vibratoires, réglementations contraignantes), de nouvelles solutions techniques alternatives émergent. Ainsi ce travail de thèse porte sur de nouveaux systèmes de refroidissement basés sur les effets électrocalorique et magnétocalorique, respectivement présents dans des films minces de polymère fluoré et dans des composites à matrice polymère et à charges magnétocaloriques. A travers des caractérisations physico-chimiques, électriques, électrocaloriques et magnétocaloriques ces travaux se proposent d’identifier l’origine de l’effet électrocalorique dans des films minces de terpolymère P(VDF-TrFE-CTFE) ferroélectrique relaxeur, mais également d’étudier l’influence de la dispersion des particules magnétocaloriques La(Fe,Si)H dans une matrice polymère de poly(propylène) sur le phénomène magnétocalorique. De plus, dans le cadre de cette thèse, un appareil de mesure directe de l’effet électrocalorique a été développé avec le Dr. Basso de l’INRIM de Turin. La comparaison avec la méthode de mesure indirecte permet d’aborder ce phénomène d’un point de vue thermodynamique afin de faire le point sur la validité des hypothèses thermodynamiques utilisées dans le cas d’un polymère ferroélectrique relaxeur. / The cooling sector is in constant expansion, the current system is based on the compression/decompression of fluids. In front of environmental and economic problems of this system (nature of frigorigen fluids and their recycling, noise and vibration issues, restrictive regulations), new alternative technological solutions emerge. Thus this thesis provides new cooling systems based on the magnetocaloric and electrocaloric effects respectively present in thin films of fluoropolymer and composites with polymer matrix and magnetocaloric loads. Through physicochemical, electrical, electrocaloric and magnetocaloric characterizations, this work intends to identify the origin of electrocaloric effect in thin terpolymer films P(VDF-TrFE-CTFE) which is a ferroelectric relaxor, but also to study the influence of the magnetocaloric particles La(Fe,Si)H dispersion in a polymer matrix of poly(propylene) on the magnetocaloric phenomenon. In addition, as part of this thesis, a direct measurement device of the electrocaloric effect was developed with Dr. Basso from the INRIM of Turin. The comparison with the indirect measurement method comes up with this phenomenon from a thermodynamic point of view to take stock of the validity of thermodynamic assumptions used in the case of a ferroelectric polymer relaxor.
106

Investigation of Structural Properties and their Relation to the Phase Transitions in Shape Memory Heusler Compounds

Devi, Parul 18 March 2019 (has links)
The present thesis is devoted to the investigation of modulated structures as well as the direct measurement of magnetocaloric effect (MCE) in Ni-Mn based magnetic shape memory (MSM) Heusler compounds in pulsed magnetic fields after analyzing isothermal entropy data taken in static magnetic fields. The emphasis is on the modulated structure of MSM Heusler compounds because of lower twinning stress which facilitates the easy transformation from austenite to martensite structure. Synchrotron x-ray powder diffraction (SXRPD) was carried out to study the modulated structure and NPD for antisite disorder as Ni and Mn have easily the same atomic scattering factor. Direct measurement of the adiabatic temperature change ΔTad was done in pulsed magnetic fields, because of fast response of ~10 to 100 ms to the sample temperature on magnetic field, providing adiabatic conditions. It also gives an opportunity of very high magnetic fields up to 70 T because of short pulse duration during the measurement. The modulated structure has been studied for the off-stoichiometric Ni2Mn1.4In0.6 and Ni1.9Pt0.1MnGa MSM Heusler compounds from SXRPD and NPD. Ni2Mn1.4In0.6 exhibits martensitic transition at TM ~ 295 K and Curie temperature TC ~ 315 K. Rietveld refinement reveals uniform atomic displacement in the modulated structure of martensite phase and the absence of premartensite phase and phason broadening of the satellite peaks which was further confirmed by HRTEM study. Therefore, the structural modulation in Ni2Mn1.4In0.6 can be successfully explained in term of the adaptive phase model. Whereas, Ni1.9Pt0.1MnGa shows the premartensite phase in addition to the martensite and austenite phases and follows the soft phonon model. The temperature dependent ac-susceptibility shows the change in slope at different temperatures 365, 265, 230 and 220 K corresponding to the Curie temperature TC, first premartensite T1, second premartensite T2 and martensite temperature TM, respectively. Temperature-dependent high resolution SXRPD data analysis shows first, a nearly 3M modulated premartensite phase with an average cubic-like feature i.e. negligible Bain distortion of the elementary L21 unit cell results from the austenite phase. This phase then undergoes an isostructural phase transition 3M like premartensite phase with robust Bain distortion in the temperature range from 220 to 195 K. Below 195 K, the martensite phase appears which results from the larger Bain-distorted premartensite phase. In this work, the magnetocaloric properties of Ni2.2Mn0.8Ga and Ni1.8Mn1.8In0.4 magnetic shape memory (MSM) Heusler compounds were studied. Ni2.2Mn0.8Ga exhibits the reversible conventional MCE, measured from isothermal entropy change ΔSM and adiabatic temperature change ΔTad because of the geometric compatibility condition (GCC) for cubic austenite phase to tetragonal martensite phase as a consequence of low thermal hysteresis of the martensite phase transition. The reversible MCE has been confirmed by applying more than one pulse in the hysteresis region at 317 K. Ni1.8Mn1.8In0.4 possess improved reversible behavior of inverse MCE due to the closely satisfying of GCC from cubic austenite to modulated monoclinic martensite structure. The maximum value of ΔSM has been found to the same for both heating and cooling curves measured from isothermal magnetization M(T) curves until a magnetic field of 5 T. The adiabatic temperature change ΔTad results in a value of -10 K by applying a magnetic field of 20 T in a pulsed magnetic field. Furthermore, reversible magnetostriction of 0.3% was observed near the first-order martensite phase transition temperatures 265, 270 and 280 K. A reduction of thermal hysteresis has been found in MSM Heusler compounds Ni2Mn1.4In0.6 and Ni1.8Co0.2Mn1.4In0.6 with the application of hydrostatic pressure followed by GCC from pressure dependent x-ray diffraction in both austenite and martensite phase. By increasing pressure, the lattice parameters of both phases change in such a way that they increasingly satisfy the GCC. The approach of GCC for different kind of martensite structures (tetragonal, orthorhombic and monoclinic) will help to design new MSM Heusler compounds taking advantage of first-order martensite phase transition.

Page generated in 0.0507 seconds