Spelling suggestions: "subject:"mandela"" "subject:"mandel""
11 |
Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1 /Tolmie, Julie. January 2000 (has links)
Thesis (Ph.D.)--Australian National University, 2000.
|
12 |
Galois martingales and the hyperbolic subset of the p-adic Mandelbrot set /Jones, Rafe. January 2005 (has links)
Thesis (Ph.D.)--Brown University, 2005. / Vita. Thesis advisor: Joseph Silverman. Includes bibliographical references (leaves 87-90). Also available online.
|
13 |
The Dynamics of Semigroups of Contraction Similarities on the PlaneSilvestri, Stefano 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Given a parametrized family of Iterated Function System (IFS) we give sufficient conditions for a parameter on the boundary of the connectedness locus, M, to be accessible from the complement of M.
Moreover, we provide a few examples of such parameters and describe how they are connected to Misiurewicz parameter in the Mandelbrot set, i.e. the connectedness locus of the quadratic family z^2+c.
|
14 |
Rendering Methods for 3D FractalsEnglund, Rickard January 2010 (has links)
<p>3D fractals can be visualized as 3D objects with complex structure and has unlimited details. This thesis will be about methods to render 3D fractals effectively and efficiently, both to explore it in real-time and to create beautiful high resolution images with high details. The methods discussed is direct volume rendering with ray-casting and cut plane rendering to explore the fractal and an approach that uses super sampling to create high resolution images. Stereoscopic rendering is discussed and how it enhance the visual perception of the fractal</p>
|
15 |
Conjunto de Mandelbrot / Mandelbrot setReis, Márcio Vaiz dos 29 August 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-10-03T21:11:40Z
No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-10-04T10:46:49Z (GMT) No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-10-04T10:46:49Z (GMT). No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The purpose of this dissertation is to present an introductory approach to the complex dynamics and fractal geometry, especially the Mandelbrot set. With the goal to simplify and stimulate the introduction of complex number in high school, the approach adopted was: the definition of the Mandelbrot set and its characteristics; the relationship between the Mandelbrot set and Julia set; how to find by using the Mandelbrot set. One of the tools used to help the teaching was Geogeobra, a dynamic software that allows the student to build the Mandelbrot set. Through this study, it is expected to motivate the learning of complex numbers by using fractal obtained by the study of function ( ) . Obtaining, as a result, a differentiated and motivating way of learning for a better understanding and intellectual development of the students. / Esse trabalho apresenta uma abordagem introdutória para a dinâmica complexa e a geometria fractal, em especial o conjunto de Mandelbrot. Com objetivo de facilitar e motivar a interação dos alunos com o ensino dos números complexos, a abordagem adotada foi: a definição do conjunto de Mandelbrot e suas características; a relação entre o conjunto de Mandelbrot e o conjunto de Julia; a relação do conjunto de Mandelbrot e o número . Uma das ferramentas utilizadas para auxiliar o professor foi o Geogeobra, um software dinâmico que permite o aluno a construção do conjunto de
Mandelbrot. Por meio deste trabalho, espera-se motivar o ensino dos números complexos através do fractal obtido pelo estudo da função ( ) . Obtendo assim, como resultado, uma forma diferenciada e motivadora do aprendizado do aluno, garantindo um melhor entendimento e desenvolvimento intelectual.
|
16 |
Rendering Methods for 3D FractalsEnglund, Rickard January 2010 (has links)
3D fractals can be visualized as 3D objects with complex structure and has unlimited details. This thesis will be about methods to render 3D fractals effectively and efficiently, both to explore it in real-time and to create beautiful high resolution images with high details. The methods discussed is direct volume rendering with ray-casting and cut plane rendering to explore the fractal and an approach that uses super sampling to create high resolution images. Stereoscopic rendering is discussed and how it enhance the visual perception of the fractal
|
17 |
Pthreads and OpenMP : A performance and productivity studySwahn, Henrik January 2016 (has links)
Today most computer have a multicore processor and are depending on parallel execution to be able to keep up with the demanding tasks that exist today, that forces developers to write software that can take advantage of multicore systems. There are multiple programming languages and frameworks that makes it possible to execute the code in parallel on different threads, this study looks at the performance and effort required to work with two of the frameworks that are available to the C programming language, POSIX Threads(Pthreads) and OpenMP. The performance is measured by paralleling three algorithms, Matrix multiplication, Quick Sort and calculation of the Mandelbrot set using both Pthreads and OpenMP, and comparing first against a sequential version and then the parallel version against each other. The effort required to modify the sequential program using OpenMP and Pthreads is measured in number of lines the final source code has. The results shows that OpenMP does perform better than Pthreads in Matrix Multiplication and Mandelbrot set calculation but not on Quick Sort because OpenMP has problem with recursion and Pthreads does not. OpenMP wins the effort required on all the tests but because there is a large performance difference between OpenMP and Pthreads on Quick Sort OpenMP cannot be recommended for paralleling Quick Sort or other recursive programs.
|
18 |
La surface bouillante de l'économie mathématique (et la mort de Monsieur Patate)Bélisle, François January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
19 |
Propriedades métricas de sistemas multiparamétricos discretosTorrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.
|
20 |
Propriedades topológicas dos conjuntos de JuliaUceda, Rafael Asmat [UNESP] 14 March 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-03-14Bitstream added on 2014-06-13T20:07:47Z : No. of bitstreams: 1
uceda_rma_me_sjrp.pdf: 517062 bytes, checksum: aff28312f73d1b91ddb23dde4fa63a1f (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Seja f : C ! C uma fun»c~ao polinomial. O conjunto de Julia, J(f), associado a f, é o conjunto dos números complexos z onde a família ffng dos iterados de f não é normal em z. Neste trabalho, estudaremos varias propriedades topológicas de J(f). Calcularemos também a dimensão de Hausdor® de J(fc), onde fc(z) = z2+c e jcj é grande, e estudaremos as propriedades do conjunto de Mandelbrot associado a fc, isto é, o conjunto M dos números complexos pelos quais J(fc)é conexo. Em particular provaremos o Teorema de Douady-Hubard que menciona que M é conexo. / Let f : C ! C be a polynomial function. The Julia set, J(f) associated to f, is the set of the complex numbers z where the family ffng of iterates of f is not normal at z. In this work, we will study many topological properties of J(f). We will compute the Hausdor® dimension of J(fc) too, where fc(z) = z2 + c and jcj is large, and we will study the properties of the Mandelbrot set associated to fc, that is, the set M of the complex numbers by which J(fc) is connected. In particular we will prove the Theorem of Douady-Hubard that mentions the connectedness of M.
|
Page generated in 0.4199 seconds