• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of Competency Analysis for manufacturing engineer Professionals of Aero Engine Industry

Lin, Shiou-Lan 27 June 2005 (has links)
The purpose of this research is to construct the competency of engine manufacturing engineer of Aero engine industry. Base on the result, it is expected to provide the principles for the Aero engine industry for personnel recruitment, education and training, and effectively enhance the working effciency. At first, this research figures out the research items of related competency analysis base on the different literatures. And then through deep discussion with senior engineers, management staffs and experts, to determine the key purpose of engine manufacturing engineers of Aero engine industry, i.e. to execute feasibility evaluation, process design, engineering integration, tool design and problem solving, etc. From those key purposes, it developped 6 major functions, 24 minor functions and 94 function units. For further study of the function tree of those competency, this research also conduct the weighing questionaire from some experts, to evaluate the weighing value of different functions on the tree diagram, to decide the degree of different functions. Among the 6 major functions, the weight of process integration capability is the highest, engineering capability get the second one, both of these two capabilities occupied 59% of the total weight. Besides these two important capabilities, it is followed by general process capability, special process capability, common capability, and operating of CAD. As a result, process integration capability and engineering competency are the most important capabilities for engine manufacturing engineers. This result could be the reference for personnel cultivation of aviation industry and also to provide the indications for self-assessment and self-growth of engine manufacturing engineers. The ultimate purpose is to expect the promotion of engine manufacturing of national Aero engine industry.
2

Minimization of Noise and Vibration Related to Driveline Imbalance using Robust Design Processes

Al-Shubailat, Omar 17 August 2013 (has links)
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles to have higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfactions. As a result, original equipment manufacturers (OEMs) have implemented design for variation in the design process to secure an acceptable (or within specification) response. The focus here will be on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance in rotating components can be unavoidable or costly to control. Some of the major components in the vehicle that are known to have imbalance and traditionally cause NVH issues and concerns include the crankshaft, the drivetrain components (transmission, driveline, half shafts, etc.), and wheels. The purpose is to assess NVH as a result of driveline imbalance variations and develop a tool to help design a more robust system to such variations.

Page generated in 0.3407 seconds