1 |
Koszulness of Torelli Lie algebrasSão João, José January 2023 (has links)
No description available.
|
2 |
Symmetry, isotopy, and irregular coversWinarski, Rebecca R. 22 May 2014 (has links)
We say that a covering space of the surface S over X has the Birman--Hilden property if the subgroup of the mapping class group of X consisting of mapping classes that have representatives that lift to S embeds in the mapping class group of S modulo the group of deck transformations. We identify one necessary condition and one sufficient condition for when a covering space has this property. We give new explicit examples of irregular branched covering spaces that do not satisfy the necessary condition as well as explicit covering spaces that satisfy the sufficient condition. Our criteria are conditions on simple closed curves, and our proofs use the combinatorial topology of curves on surfaces.
|
3 |
Tresses sur les surfaces et invariants d'entrelacsBELLINGERI, Paolo 15 April 2003 (has links) (PDF)
Le groupe de tresses à $n$ brins sur une surface $S$ est une généralisation naturelle à la fois du groupe de tresses classique à $n$ brins et du groupe fondamental de $S$. Dans la première partie de cette thèse nous donnons des nouvelles présentations pour les groupes de tresses sur les surfaces, qui améliorent les présentations obtenues auparavant par Scott et González-Meneses. Nous montrons ensuite comment associer à tout graphe à $n$ sommets sur la sphère une présentation pour le groupe de tresses à $n$ brins sur la sphère, ce qui étend le résultat de Sergiescu dans le cas des graphes planaires. Nous calculons aussi le $Out$ des groupes de tresses sur la sphère. Ensuite, nous généralisons au cas des tresses sur les surfaces les résultats de Fenn, Rolfsen et Zhu sur les centralisateurs des tresses. Comme application de ce résultat nous obtenons la résolubilité du problème du mot pour les monoïdes de tresses singulières sur les surfaces. Dans la dernière partie, nous étudions les algèbres de Hecke cubiques et nous démontrons qu'il existe une trace de Markov sur des quotients convenables de ces algèbres, en généralisant l'approche de V. Jones. Nous construisons ainsi deux nouveaux invariants d'entrelacs, différents des invariants HOMFLY et de Kauffman, récursivement calculables et définis d'une manière unique par deux relations d'écheveau explicites, dont une cubique.
|
4 |
A new filtration of the Magnus kernelMcNeill, Reagin 16 September 2013 (has links)
For a oriented genus g surface with one boundary component, S_g, the Torelli group is the group of orientation preserving homeomorphisms of S_g that induce the identity on homology. The Magnus representation of the Torelli group represents the action on F/F'' where F=π_1(S_g) and F'' is the second term of the
derived series. I show that the kernel of the Magnus representation, Mag(S_g), is highly non-trivial and has a rich structure as a group. Specifically, I define an infinite filtration of Mag(S_g) by subgroups,
called the higher order Magnus subgroups, M_k(S_g). I develop methods for generating nontrivial mapping classes in M_k(S_g) for all k and g≥2. I show that for each k the quotient M_k(S_g)/M_{k+1}(S_g) contains a subgroup isomorphic to a lower central series quotient of free groups E(g-1)_k/E(g-1)_{k+1}. Finally I show that for g≥3 the quotient M_k(S_g)/M_{k+1}(S_g) surjects onto an infinite rank torsion free abelian group. To do this, I define a Johnson-type homomorphism on each higher order Magnus subgroup quotient and show it has a highly non-trivial image.
|
5 |
Combinatorial methods in Teichmüller theory / Méthodes combinatoires en théorie de TeichmüllerDisarlo, Valentina 14 June 2013 (has links)
Dans cette thèse nous étudions certains propriétés combinatoires et géométriques des complexes d'arcs des surfaces de type fini. Nous démontrons que le groupe d'automorphisme du complexe d'arcs est le mapping class group de la surface. Nous étudions aussi le graphe des triangulations idéales et nous donnons certains applications au espaces de Teichmueller des surfaces avec bord . / In this thesis we deal with combinatorial and geometric properties of the arc complex of a surface of finite type. We prove that its automorphism group is isomorphic to the mapping class of the surface. Furthermore, we investigate the geometric properties of the ideal triangulation graph of a surface and provide some application to Teichmueller theory of a surface with boundary .
|
6 |
On the Casson-Walker invariant of 3-manifolds with genus one open book decompositions / 種数1の開本分解を持つ3次元多様体のCasson-Walker不変量についてMochizuki, Atsushi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21545号 / 理博第4452号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 大槻 知忠, 教授 向井 茂, 教授 小野 薫 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
Foncteurs de Long-Moody et homologie stable des groupes de difféotopie / Long-Moody functors and stable homology of mapping class groupsSoulié, Arthur 27 June 2018 (has links)
Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d’une représentation triviale via une construction introduite par Long en 1994, à l’issue d’une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d’en dégager plus aisément des variantes. De plus, le degré de polynomialité d’un foncteur permet d’en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d’autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d’automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l’homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM(F) obtenu en appliquant un foncteur de Long-Moody. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d’autres familles de groupes. Le dernier chapitre concerne des calculs d’homologie stable pour les groupes de difféotopie. / Among the linear representations of braid groups, Burau representations are recovered from a trivial representation using a construction introduced by Long in 1994, following a collaboration with Moody. This construction, called the Long-Moody construction, thus allows to construct more and more complex representations of braid groups. In this thesis, we have a functorial point of view on this construction, which allows find more easily some variants. Moreover, the degree of polynomiality of a functor measures its complexity. We thus show that the Long-Moody construction defines a functor LM, which increases the degree of polynomiality. Furthermore, we define analogous functors for other families of groups such as mapping class groups of surfaces and 3-manifolds, symmetric groups or automorphism groups of free groups. They satisfy similar properties on the polynomiality. Hence, Long-Moody functors provide twisted coefficients fitting into the framework of the homological stability results of Randal-Williams and Wahl for the afore mentioned families of groups. Finally, we give a comparison result for the stable homology with coefficient given by a functor F and the one with coefficient given by the functor LM(F), obtained applying a Long-Moody functor. This thesis has three chapters. The first one introduces Long-Moody functors for braid groups and deals with their effect on the polynomiality. The first one deals with the generalisation of Long-Moody functors for other families of groups. The last chapter touches on stable homology computations for mapping class group.
|
8 |
Groupes de Grothendieck-Teichmüller et inertie champêtre des espaces de modules de courbes de genre zéro et unCollas, Benjamin 23 September 2011 (has links) (PDF)
Cette thèse traite de la théorie de Grothendieck-Teichmüller et des espaces de modules de courbes à points marqués non-ordonnés, plus particulièrement des différents types d'inertie présents dans leurs groupes fondamentaux géométriques. On étend l'action connue du groupe de Galois absolu sur l'inertie divisorielle à l'infini en une action ayant les mêmes propriétés sur l'inertie champêtre en genre zéro, et sur toute la torsion profinie d'ordre premier en genre zéro et un. En fait, nous montrons que ce dernier résultat est valable non seulement pour le groupe de Galois absolu mais pour un nouveau groupe de Grothendieck-Teichmüller GS issu de conditions de torsion en genre zéro, dont on montre qu'il agit sur les full mapping class groups de genre quelconque. On établit ce résultat en adaptant un principe cohomologique de J. P. Serre pour réduire, dans certains cas, la torsion d'un groupe profini à celle d'un groupe discret. On utilise cette théorie pour établir que, dans les cas des genre zéro et un, la torsion profinie d'ordre premier est conjugée à la torsion discrète. Ceci permet d'expliciter l'action du groupe GS sur la torsion profine d'ordre premier.
|
9 |
Mapping class groups, skein algebras and combinatorial quantization / Groupes de difféotopie, algèbres d'écheveaux et quantification combinatoireFaitg, Matthieu 16 September 2019 (has links)
Les algèbres L(g,n,H) ont été introduites par Alekseev-Grosse-Schomerus et Buffenoir-Roche au milieu des années 1990, dans le cadre de la quantification combinatoire de l'espace de modules des G-connexions plates sur la surface S(g,n) de genre g avec n disques ouverts enlevés. L'algèbre de Hopf H, appelée algèbre de jauge, était à l'origine le groupe quantique U_q(g), avec g=Lie(G). Dans cette thèse nous appliquons les algèbres L(g,n,H) à la topologie en basses dimensions (groupe de difféotopie et algèbres d'écheveaux des surfaces), sous l'hypothèse que H est une algèbre de Hopf de dimension finie, factorisable et enrubannée mais pas nécessairement semi-simple, l'exemple phare d'une telle algèbre de Hopf étant le groupe quantique restreint associé à sl(2) (à une racine 2p-ième de l'unité). D'abord, nous construisons en utilisant L(g,n,H) une représentation projective des groupes de difféotopie de S(g,0)D et de S(g,0) (où D est un disque ouvert). Nous donnons des formules pour les représentations d'un ensemble de twists de Dehn qui engendre le groupe de difféotopie; en particulier ces formules nous permettent de montrer que notre représentation est équivalente à celle construite par Lyubashenko-Majid et Lyubashenko via des méthodes catégoriques. Pour le tore S(1,0) avec le groupe quantique restreint associé à sl(2) comme algèbre de jauge, nous calculons explicitement la représentation de SL(2,Z) en utilisant une base convenable de l'espace de représentation et nous en déterminons la structure.Ensuite, nous introduisons une description diagrammatique de L(g,n,H) qui nous permet de définir de façon très naturelle l'application boucle de Wilson W. Cette application associe un élément de L(g,n,H) à chaque entrelac dans (S(g,n)D) x [0,1] qui est parallélisé, orienté et colorié par des H-modules. Quand l'algèbre de jauge est le groupe quantique restreint associé à sl(2), nous utilisons W et les représentations de L(g,n,H) pour construire des représentations des algèbres d'écheveaux S_q(S(g,n)). Pour le tore S(1,0) nous étudions explicitement cette représentation. / The algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n open disks removed. The Hopf algebra H, called gauge algebra, was originally the quantum group U_q(g), with g = Lie(G). In this thesis we apply these algebras L(g,n,H) to low-dimensional topology (mapping class groups and skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being the restricted quantum group associated to sl(2) (at a 2p-th root of unity).First, we construct from L(g,n,H) a projective representation of the mapping class groups of S(g,0)D and of S(g,0) (D being an open disk). We provide formulas for the representations of Dehn twists generating the mapping class group; in particular these formulas allow us to show that our representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via categorical methods. For the torus S(1,0) with the restricted quantum group associated to sl(2) for the gauge algebra, we compute explicitly the representation of SL(2,Z) using a suitable basis of the representation space and we determine the structure of this representation.Second, we introduce a diagrammatic description of L(g,n,H) which enables us to define in a very natural way the Wilson loop map W. This maps associates an element of L(g,n,H) to any link in (S(g,n)D) x [0,1] which is framed, oriented and colored by H-modules. When the gauge algebra is the restricted quantum group associated to sl(2), we use W and the representations of L(g,n,H) to construct representations of the skein algebras S_q(S(g,n)). For the torus S(1,0) we explicitly study this representation.
|
10 |
Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique / Parabolic subgroups and genericity in Artin-Tits groups of spherical typeCumplido Cabello, María 03 September 2018 (has links)
Dans la première partie de cette thèse on étudiera la conjecture de généricité: dans le graphe de Cayley du groupe modulaire d'une surface fermée on regarde une boule centrée à l'identité et on s'intéresse à la proportion de sommets pseudo-Anosov dans cette boule. La conjecture de généricité affirme que cette proportion doit tendre vers 1 quand le rayon de la boule tend vers l'infini. On montre qu'elle est bornée inférieurement par un nombre strictement positif et on montre des résultats similaires pour une grande classe de sous-groupes du groupe modulaire. On présente aussi des résultats analogues pour des groupes d'Artin-Tits de type sphérique, en sachant que dans ce cas, être pseudo-Anosov est analogue à agir loxodromiquement sur un complexe delta-hyperbolique convenable. Dans la deuxième partie on donne des résultats sur les sous-groupes paraboliques des groupes d'Artin-Tits de type sphérique: le standardisateur minimal d'une courbe dans le disque troué est la tresse minimale positive qui la fait devenir ronde. On construit un algorithme pour le calculer d'une façon géométrique. Ensuite, on généralise le problème pour les groupes d'Artin-Tits de type sphérique. On montre aussi que l'intersection de deux sous-groupes paraboliques est un sous-groupe parabolique et que l'ensemble de sous-groupes paraboliques est un treillis par rapport à l'inclusion. Finalement, on définit le complexe simplicial des sous-groupes paraboliques irréductibles, et on le propose comme l'analogue du complexe de courbes. / In the first part of this thesis we study the genericity conjecture: In the Cayley graph of the mapping class group of a closed surface we look at a ball of large radius centered on the identity vertex, and at the proportion of pseudo-Anosov vertices among the vertices in this ball. The genericity conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero and prove similar results for a large class of subgroups of the mapping class group. We also present analogous results for Artin--Tits groups of spherical type, knowing that in this case being pseudo-Anosov is analogous to being a loxodromically acting element. In the second part we provide results about parabolic subgroups of Artin-Tits groups of spherical type: The minimal standardizer of a curve on a punctured disk is the minimal positive braid that transforms it into a round curve. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin--Tits groups of spherical type. We also show that the intersection of two parabolic subgroups is a parabolic subgroup and that the set of parabolic subgroups forms a lattice with respect to inclusion. Finally, we define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue of the curve complex for mapping class groups.
|
Page generated in 0.0751 seconds