Spelling suggestions: "subject:"maschinelles ubersetzung"" "subject:"maschinelles übersetzung""
1 |
Möglichkeiten und Grenzen der Maschinellen ÜbersetzungWinter, Franziska 23 March 2015 (has links) (PDF)
keine Angabe
|
2 |
Machine Translation: A Theoretical and Practical Introduction / Maschinelle Übersetzung: Eine theoretische und praktische EinführungRiedel, Marion 08 May 2002 (has links) (PDF)
The paper presents the basics and the development
of Machine Translation and explains different
methods for evaluating translation machines on the
base of a detailed example. / Die im Rahmen des Seminars "Language and Computers"
der englischen Sprachwissenschaft entstandene Arbeit
behandelt die Grundlagen und die Entwicklung der
Maschinellen Übersetzung und gibt anhand eines
ausführlichen Beispiels Einblick in Methoden zur
Evaluation von Übersetzungsmaschinen.
|
3 |
Möglichkeiten und Grenzen der Maschinellen Übersetzung: Eine Evaluierung der Software Personal Translator für das Sprachenpaar Französisch - DeutschWinter, Franziska 04 August 2014 (has links)
keine Angabe
|
4 |
Post-Editing als Bestandteil von Translationsstudiengängen in der DACH-Region: Ergebnisse einer Online-BefragungSchumann, Paula 25 May 2020 (has links)
No description available.
|
5 |
Exploiting Linguistic and Statistical Knowledge in a Text Alignment SystemSchrader, Bettina 20 February 2009 (has links)
In machine translation, the alignment of corpora has evolved into a mature research area, aimed at providing training data for statistical or example-based machine translation systems. Moreover, the alignment information can be used for a variety of other purposes, including lexicography and the induction of tools for natural language processing. The alignment techniques used for these purposes fall roughly in two separate classes: sentence alignment approaches that often combine statistical and linguistic information, and word alignment models that are dominated by the statistical machine translation paradigm. Alignment approaches that use linguistic knowledge provided by corpus annotation are rare, as are as non-statistical word alignment strategies. Furthermore, parallel corpora are typically not aligned at all text levels simultaneously. Rather, a corpus is first sentence aligned, and in a subsequent step, the alignment information is refined to go below the sentence level. In this thesis, the distinction between the two alignment classes is withdrawn. Rather, a system is introduced that can simultaneously align at the paragraph, sentence, word, and phrase level. Furthermore, linguistic as well as statistical information can be combined. This combination of alignment cues from different knowledge sources, as well as the combination of the sentence and word alignment tasks, is made possible by the development of a modular alignment platform. Its main features are that it supports different kinds of linguistic corpus annotation, and furthermore aligns a corpus hierarchically, such that sentence and word alignments are cohesive. Alignment cues are not used within a global alignment model. Rather, different sub-models can be implemented and allowed to interact. Most of the alignment modules of the system have been implemented using empirical corpus studies, aimed at showing how the most common types of corpus annotation can be exploited for the alignment task.
|
6 |
Bimorphism Machine TranslationQuernheim, Daniel 27 April 2017 (has links) (PDF)
The field of statistical machine translation has made tremendous progress due to the rise of statistical methods, making it possible to obtain a translation system automatically from a bilingual collection of text. Some approaches do not even need any kind of linguistic annotation, and can infer translation rules from raw, unannotated data. However, most state-of-the art systems do linguistic structure little justice, and moreover many approaches that have been put forward use ad-hoc formalisms and algorithms. This inevitably leads to duplication of effort, and a separation between theoretical researchers and practitioners.
In order to remedy the lack of motivation and rigor, the contributions of this dissertation are threefold:
1. After laying out the historical background and context, as well as the mathematical and linguistic foundations, a rigorous algebraic model of machine translation is put forward. We use regular tree grammars and bimorphisms as the backbone, introducing a modular architecture that allows different input and output formalisms.
2. The challenges of implementing this bimorphism-based model in a machine translation toolkit are then described, explaining in detail the algorithms used for the core components.
3. Finally, experiments where the toolkit is applied on real-world data and used for diagnostic purposes are described. We discuss how we use exact decoding to reason about search errors and model errors in a popular machine translation toolkit, and we compare output formalisms of different generative capacity.
|
7 |
Bimorphism Machine TranslationQuernheim, Daniel 10 April 2017 (has links)
The field of statistical machine translation has made tremendous progress due to the rise of statistical methods, making it possible to obtain a translation system automatically from a bilingual collection of text. Some approaches do not even need any kind of linguistic annotation, and can infer translation rules from raw, unannotated data. However, most state-of-the art systems do linguistic structure little justice, and moreover many approaches that have been put forward use ad-hoc formalisms and algorithms. This inevitably leads to duplication of effort, and a separation between theoretical researchers and practitioners.
In order to remedy the lack of motivation and rigor, the contributions of this dissertation are threefold:
1. After laying out the historical background and context, as well as the mathematical and linguistic foundations, a rigorous algebraic model of machine translation is put forward. We use regular tree grammars and bimorphisms as the backbone, introducing a modular architecture that allows different input and output formalisms.
2. The challenges of implementing this bimorphism-based model in a machine translation toolkit are then described, explaining in detail the algorithms used for the core components.
3. Finally, experiments where the toolkit is applied on real-world data and used for diagnostic purposes are described. We discuss how we use exact decoding to reason about search errors and model errors in a popular machine translation toolkit, and we compare output formalisms of different generative capacity.
|
8 |
Konzeption eines dreistufigen Transfers für die maschinelle Übersetzung natürlicher SprachenLaube, Annett, Karl, Hans-Ulrich 14 December 2012 (has links) (PDF)
0 VORWORT
Die für die Übersetzung von Programmiersprachen benötigten Analyse- und Synthesealgorithmen können bereits seit geraumer Zeit relativ gut sprachunabhängig formuliert werden. Dies findet seinen Ausdruck unter anderem in einer Vielzahl von Generatoren, die den Übersetzungsproze? ganz oder teilweise automatisieren lassen. Die Syntax der zu verarbeitenden Sprache steht gewöhnlich in Datenform (Graphen, Listen) auf der Basis formaler Beschreibungsmittel (z.B. BNF) zur Verfügung. Im Bereich der Übersetzung natürlicher Sprachen ist die Trennung von Sprache und Verarbeitungsalgorithmen - wenn überhaupt - erst ansatzweise vollzogen. Die Gründe liegen auf der Hand. Natürliche Sprachen sind mächtiger, ihre formale Darstellung schwierig. Soll die Übersetzung auch die mündliche Kommunikation umfassen, d.h. den menschlichen Dolmetscher auf einer internationalen Konferenz oder beim Telefonieren mit einem Partner, der eine andere Sprache spricht, ersetzen, kommen Echtzeitanforderungen dazu, die dazu zwingen werden, hochparallele Ansätze zu verfolgen.
Der Prozess der Übersetzung ist auch dann, wenn keine Echtzeiterforderungen vorliegen, außerordentlich komplex. Lösungen werden mit Hilfe des Interlingua- und des Transferansatzes gesucht. Verstärkt werden dabei formale Beschreibungsmittel realtiv gut erforschter Teilgebiete der Informatik eingesetzt (Operationen über dekorierten Bäumen, Baum-zu-Baum-Übersetzungsstrategien), von denen man hofft, daß die Ergebnisse weiter führen werden als spektakuläre Prototypen, die sich jetzt schon am Markt befinden und oft aus heuristischen Ansätzen abgeleitet sind.
[...]
|
9 |
Konzeption eines dreistufigen Transfers für die maschinelle Übersetzung natürlicher SprachenLaube, Annett, Karl, Hans-Ulrich 14 December 2012 (has links)
0 VORWORT
Die für die Übersetzung von Programmiersprachen benötigten Analyse- und Synthesealgorithmen können bereits seit geraumer Zeit relativ gut sprachunabhängig formuliert werden. Dies findet seinen Ausdruck unter anderem in einer Vielzahl von Generatoren, die den Übersetzungsproze? ganz oder teilweise automatisieren lassen. Die Syntax der zu verarbeitenden Sprache steht gewöhnlich in Datenform (Graphen, Listen) auf der Basis formaler Beschreibungsmittel (z.B. BNF) zur Verfügung. Im Bereich der Übersetzung natürlicher Sprachen ist die Trennung von Sprache und Verarbeitungsalgorithmen - wenn überhaupt - erst ansatzweise vollzogen. Die Gründe liegen auf der Hand. Natürliche Sprachen sind mächtiger, ihre formale Darstellung schwierig. Soll die Übersetzung auch die mündliche Kommunikation umfassen, d.h. den menschlichen Dolmetscher auf einer internationalen Konferenz oder beim Telefonieren mit einem Partner, der eine andere Sprache spricht, ersetzen, kommen Echtzeitanforderungen dazu, die dazu zwingen werden, hochparallele Ansätze zu verfolgen.
Der Prozess der Übersetzung ist auch dann, wenn keine Echtzeiterforderungen vorliegen, außerordentlich komplex. Lösungen werden mit Hilfe des Interlingua- und des Transferansatzes gesucht. Verstärkt werden dabei formale Beschreibungsmittel realtiv gut erforschter Teilgebiete der Informatik eingesetzt (Operationen über dekorierten Bäumen, Baum-zu-Baum-Übersetzungsstrategien), von denen man hofft, daß die Ergebnisse weiter führen werden als spektakuläre Prototypen, die sich jetzt schon am Markt befinden und oft aus heuristischen Ansätzen abgeleitet sind.
[...]:0 Vorwort S. 2
1 Einleitung 2. 4
2 Die Komponenten des dreistufigen Transfers S. 5
3 Formalisierung der Komposition S. 8
4 Pre-Transfer-Phase S. 11
5 Formalisierung der Pre-Transfer-Phase S. 13
6 Transfer-Phase S. 18
7 Formalisierung der Transfer-Phase S. 20
8 Post-Transfer-Phase S. 24
9 Transfer-Beispiel S. 25
10 Zusammenfassung S. 29
|
10 |
Generierung von natürlichsprachlichen Texten aus semantischen Strukturen im Prozeß der maschinellen Übersetzung - Allgemeine Strukturen und AbbildungenRosenpflanzer, Lutz, Karl, Hans-Ulrich 14 December 2012 (has links) (PDF)
0 VORWORT
Bei der maschinellen Übersetzung natürlicher Sprache dominieren mehrere Probleme. Man hat es immer mit sehr großen Datenmengen zu tun. Auch wenn man nur einen kleinen Text übersetzen will, ist diese Aufgabe in umfänglichen Kontext eingebettet, d.h. alles Wissen über Quell- und Zielsprache muß - in möglichst formalisierter Form - zur Verfügung stehen. Handelt es sich um gesprochenes Wort treten Spracherkennungs- und Sprachausgabeaufgaben sowie harte Echtzeitforderungen hinzu. Die Komplexität des Problems ist - auch unter Benutzung moderner Softwareentwicklungskonzepte - für jeden, der eine Implementation versucht, eine nicht zu unterschätzende Herausforderung.
Ansätze, die die Arbeitsprinzipien und Methoden der Informatik konsequent nutzen, stellen ihre Ergebnisse meist nur prototyisch für einen sehr kleinen Teil der Sprache -etwa eine Phrase, einen Satz bzw. mehrere Beispielsätze- heraus und folgern mehr oder weniger induktiv, daß die entwickelte Lösung auch auf die ganze Sprache erfolgreich angewendet werden kann, wenn man nur genügend „Lemminge“ hat, die nach allen Seiten ausschwärmend, die „noch notwendigen Routinearbeiten“ schnell und bienenfleißig ausführen könnten.
|
Page generated in 0.1218 seconds