• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 362
  • 106
  • 92
  • 59
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 5
  • 4
  • Tagged with
  • 839
  • 839
  • 297
  • 137
  • 133
  • 113
  • 98
  • 97
  • 85
  • 84
  • 78
  • 77
  • 72
  • 67
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

Analysis of Flame Blow-Out in Turbulent Premixed Ammonia/Hydrogen/Nitrogen - Air Combustion

Lakshmi Srinivasan (14228177) 08 December 2022 (has links)
<p>  </p> <p>With economies shifting towards net-zero carbon emissions, there is an increased interest in carbon-free energy carriers. Hydrogen is a potential carbon-free energy source. However, it poses several production, infrastructural, and safety challenges. Ammonia blends have been identified as a potential hydrogen carrier and fuel for gas turbine combustion. Partially cracked ammonia mixtures consist of large quantities of hydrogen that help overcome the disadvantages of pure ammonia combustion. The presence of nitrogen in the fuel blends leads to increased NO<sub>x</sub> emissions, and therefore lean premixed combustion is necessary to curb these emissions. Understanding the flame features, precursors, and dynamics of blowout of such blends due to lean conditions is essential for stable operation, lean blowout prediction, and control. </p> <p><br></p> <p>In this study, high-fidelity large eddy simulations for turbulent premixed ammonia/hydrogen/nitrogen-air flames in an axisymmetric, unconfined, bluff-body stabilized burner are performed to gain insights into lean blowout dynamics. Partially cracked ammonia (40% NH<sub>3</sub>, 45% H<sub>2</sub>, and 15% N<sub>2</sub>, by volume) is chosen as fuel since its laminar burning velocity is comparable to CH4-air mixtures. A finite rate chemistry model with a detailed chemical kinetic mechanism (36 species and 247 reactions) is utilized to capture characteristics of various species during blowout. A comprehensive study of the flow field and flame structure for a weakly stable burning at an equivalence ratio of 0.5 near the blowout limit is presented. Further, the effects of blowout on the heat release rate, vorticity, distribution of major species, and ignition radicals are studied at four time instances at blowout velocity of 70 m/s. Since limited data is available on turbulent premixed combustion of partially cracked ammonia, such studies are essential in understanding flame behavior and uncertainties with regard to blowout.</p>
782

Determination of the Mechanism for the Boiling Crisis using Through-Substrate Visual and Infrared Measurements

Manohar Bongarala (17628363) 14 December 2023 (has links)
<p dir="ltr">Boiling processes have long had an important role in power generation and air conditioning applications. The efficient and reliable heat dissipation afforded through the phase change process in the boiling has led to their generation of a substantial body of work in this field over several decades. Despite decades of efforts, the heat transfer performance prediction in boiling has been highly empirical with models working only for a narrow range of surface/fluids or other operating conditions. The limitation in these models is a result of a lack of mechanistic understanding of the underlying heat and mass transfer process. Surface dryout or boiling crisis is a process wherein there is a spontaneous formation of vapor film on top of the surface causing a catastrophic increase in surface temperature. The heat flux at which this formation of vapor film occurs is called critical heat flux (CHF). The CHF demarcates the upper limit to the regime of stable nucleating bubbles called nucleate boiling. The mechanism causing dryout is under debate for over half a century and several conflicting theories that cause dryout have been suggested since the 1950s including hydrodynamic, irreversible dryspot expansion, macrolayer dryout/liftoff, critical bubble distributions, vapor-recoil based theories and more. The lack of consensus is due to limitation in the information collected on the dynamic multiscale and chaotic bubble interactions. Recent advances in high-fidelity spatiotemporal phase, temperature, and heat flux measurements now enable diagnostic tools that can be leveraged to understand the complex heat transfer processes emerging from bubble-surface interaction on the boiling surface. In this work, we develop such techniques to understand various transport mechanisms underlying boiling and its crisis.</p><p dir="ltr">In this work, an experimental technique for collecting synchronized through-substrate visual and infrared (IR) measurements of a boiling surface is developed. An IR and visually transparent sapphire substrate with an IR-opaque indium-tin-oxide (ITO) heater layer is used to measure the phase (liquid and vapor areas) and temperature of the ITO layer. The visual camera collects the light reflected off the substrate from a red LED and the images collected show a contrast between liquid and vapor areas that is used to generate binarized phase maps. The temperature from the IR camera is used as boundary condition to solve a conduction problem for heat fluxes going into the fluid. Four distinct heat flux signatures corresponding to liquid, contact line, vapor and rewetting regions are observed. A post-processing methodology utilizing synchronous phase measurements to identify and partition these regions is introduced. The high-fidelity phase measurements allow for detection of fine features that are not discernable using heat flux maps alone. Analysis of the heat flux and temperature maps of partitioned regions for HFE-7100 fluid on the ITO surface show qualitative agreement with the trends in mechanisms underlying those areas. The experiment and post-processing methodology introduced in this work is the first to provide partitioning of underlying heat transfer mechanisms for multi-bubbles throughout the entire range of the boiling curve during both steady and transient scenarios.</p><p dir="ltr">The technique developed is used to probe the mechanisms underlying the boiling crisis. Theories suggested in the literature for boiling crisis are carefully evaluated and evidence against hydrodynamic instability, macrolayer dryout, vapor recoil, irreversible expansion of dryspots, macrolayer liftoff model, and bifurcations from critical distributions is observed. The signature in the peak of the spatially averaged fluid heat flux is observed to precede any other signs of dryout. Beyond the peak heat flux an increase in superheat leads to reduced heat dissipated by boiling and further increases the temperature causing a thermal runaway in the substrate that eventually leads to dryout. Hence, the boiling crisis is found to be a consequence of a peak in the nucleate boiling curve. The cause for the peak in the boiling heat flux for the surface-fluid combination tested was due to degradation of heat transfer caused by the replacement of high-heat-transfer contact line region with lower-heat-transfer vapor covered regions, among the multiple competing mechanisms. Hence, we propose that mechanistically modeling the boiling crisis rests on prediction of the peak in the upper portion of the nucleate boiling curve by considering all underlying heat transfer mechanisms. A modeling framework based on heat flux partitioning, where the overall heat transferred during boiling is calculated as the sum of the heat transferred by individual mechanisms is demonstrated as potential pathway to predict the upper portion of the nucleate boiling curve and thereby critical heat flux. Based on the terms involved in summation for individual mechanisms, we propose that the boiling curve for any given surface be interpreted as a path on a multidimensional surface (boiling manifold). Estimation of such a boiling manifold allows for prediction of the boiling curve for any surface, given development of the relations between these parameters and surface-fluid properties, and can further be used to backtrack relevant thermophysical or nucleation properties for enhanced boiling performance.</p><p dir="ltr">Enhancement of pool boiling heat transfer performance using surface modifications is of major interest to applications and this work further delves into characterizing the boiling performance using traditional surface averaged measurements of microstructured surfaces using HFE-7100. We find that microlayer evaporation from the imbibed liquid layer underneath the growing vapor bubbles is the key mechanism of boiling heat transfer enhancement in microstructures. Further, this implies that characterization of microstructured surfaces for evaporative performance can serve as an important proxy to enable heat transfer coefficient enhancement prediction during pool boiling. Hence, we also developed an easily calculated Figure of Merit (FOM) that characterizes the efficacy of evaporation from microstructured surfaces.</p><p dir="ltr">To summarize, in this work we developed an experimental technique using synchronous through-substrate high-speed visual and IR imaging methods. New post-processing techniques for partitioning of different heat transfer mechanisms are proposed and used to analyze boiling on an ITO-coated sapphire substrate with HFE-7100 as the working fluid. We reveal thermal runaway in the substrate caused due to a negative-sloping boiling curve as the mechanism of dryout. Mechanistic modeling of the critical heat flux thus involves calculating the peak in the nucleate boiling curve. A framework to predict the nucleate boiling curve and subsequently critical heat flux is proposed based on the partitioning analysis. The experimental method developed lays the groundwork for measuring heat flux and superheats associated with various mechanisms, and hence, enables validation of future partitioning-based boiling heat transfer models that intrinsically enable prediction of the peak.</p>
783

Computational Modeling of Ignition and Premixed Flame Propagation Initiated by a Pre-chamber Turbulent Jet

Utsav Jain (17583528) 09 December 2023 (has links)
<p dir="ltr">Addressing the pressing need for reduced carbon emissions, Turbulent Jet Ignition (TJI) emerges as a promising technology for ultra-lean combustion, offering enhanced thermal efficiencies and minimized cyclic variability in spark-ignited engines. To facilitate rapid testing and integration of this technology, a robust computational modeling framework is crucial. This study delves into the predictive capabilities of computational models for main-chamber ignition and premixed flame propagation using a single-cycle TJI rig measured by Biswas et al. (Applied Thermal Engineering, volume 106, 2016). Employing an open-source compressible flow simulation solver with Large Eddy Simulation (LES) for turbulence modeling, the investigation integrates the conventional Laminar Finite Rate Chemistry (LFRC) model alongside the transported Probability Density Method (PDF) for turbulence-chemistry interaction. A fully-consistent Eulerian Monte-Carlo Fields (EMCF) method is utilized to approximate the transported PDF, while Interaction by Exchange with Mean is employed to close micro-mixing terms in stochastic differential equations. A reduced chemical reaction mechanism with 21 species and 84 reactions (DRM-19) is used for solving chemical kinetics, and a double Gaussian energy deposition model is used to approximate the spark ignition in the pre-chamber. An unstructured O-grid mesh with 0.3 million cells in the pre-chamber and 1 million cells in the main chamber is employed. Results are divided into two phases: pre-chamber initialization and full TJI simulations. Validation of the predicted pre-chamber flame propagation and the lean ignition in the main-chamber is carried out by using available experimental data. Under quiescent conditions, both the LFRC and transported PDF methods largely underestimate the flame speed and subsequent pressure growth in the pre-chamber. A linear momentum forcing technique is applied to investigate the impact of initial turbulence in the pre-chamber, demonstrating a notable influence on flame propagation. Fine-tuning of the forcing coefficient reproduces the sudden pressure growth observed in the experiment. The experimentally validated pre-chamber simulation serves as the initial condition for the full TJI simulations. It is found that the LFRC model fails to predict lean-ignition in the main-chamber, resulting in a misfiring event. Incorporation of turbulence-chemistry interaction using the transported PDF method substantially improves the prediction of the ignition event in the main-chamber, achieving fair qualitative agreement and quantitative validation of combustion parameters within 10% of the reported experimental data. The rich simulation results consisting of a full set of statistical description of the thermo-chemical states enable us to gain deep insights into the ignition mechanisms in the main chamber, which is limited when done experimentally. A novel dual ignition phenomenon is revealed in the TJI rig for the first time. Initially, a primary ignition kernel is formed at a downstream location which eventually detaches from the main jet. As the jet momentum decreases, a secondary ignition event follows, this time at a more upstream location which eventually combines with the primary ignition kernel to form a single connected flame front. Investigation of these ignition sequences in chemical composition space reveal distinct differences between the two. The primary ignition event in the main-chamber is followed by a large concentration of active radicals from the pre-chamber jet, accelerating the chain-branching steps, characterizing what has been referred to as flame ignition. In contrast, the secondary ignition occurs in the absence of active radicals in the pre-chamber jet, hence characterized as jet ignition. Further analysis of the effect of pre-chamber jet characteristics on lean ignition in the main-chamber is conducted by setting up cases with different initial pressure ratios (p<sub>r</sub><sup>o</sup>) between the two chambers, a non-dimensional parameter, ranging from 1.2 to 3.2. As the initial pressure ratio increases, jet momentum increases, with dual ignition observed in cases above p<sub>r</sub><sup>o</sup>= 2.2. Case with p<sub>r</sub><sup>o</sup>= 3.2 lead to misfiring. The effect of ignition sequence on global combustion characteristics of TJI is analyzed. Dual ignition events lead to non-monotonicity in combustion characteristics such as global reaction progress variable, flame penetration, and global heat release rate. In dual ignition events, although the rate of fuel consumption and global heat release rate is initially lower, the secondary ignition leads to a sudden increase in flame surface area, resulting in a sudden jump and promoting the overall performance of the TJI system.</p>
784

Overall Technologies to Enhance Efficiency Accuracy in Turbines

Diego Sanchez de la Rosa (14159952) 28 November 2023 (has links)
<p dir="ltr">Transportation and energy production industries strongly rely on improvements in gas turbine performance. The quantification of these improvements is dependent on the accuracy of the measurements performed during testing. An increase of 0.5\% in efficiency is sufficient to secure a new development program worth millions of dollars, but in the case of temperature measurements, uncertainties below 0.5 K are required, which presents a challenge. This work selects heat flux estimation and total temperature measurement uncertainties as major contributors for efficiency uncertainty.</p><ul><li>Heat flux measurements are critical to evaluate the impact on the efficiency. Additionally, thermal fatigue in turbine airfoils defines the life cycle of the engine core. This work performs an estimation of the heat transfer via a simplified numerical model that uses infrared (IR) measurements in the surface of the casing to predict the temperature of the passage wall. The model is validated with real cool-down data of the turbine to yield results within a 10\% of the actual temperature.</li><li>Total temperature measurement suffers from errors due to heat transfer effects in the probe. Two dominant sources of errors are convection and conduction between the thermocouple wires, the probe support, and the flow. These effects can be treated in two different categories: the velocity error, created by a non-isentropic reduction of the flow velocity upstream the thermocouple junction, and the thermal equilibrium effects between the junction and the probe support, involving heat transfer through the wire to the shield and the probe stem due to temperature differences between each component (the so-called \emph{conduction error}). An open jet stand is used to evaluate the effects of velocity error at various Mach numbers. The conduction error is addressed with the design and manufacturing of dual-wire thermocouple probes. The readings from two wires with different length-to-diameter ratios are used to correct for the flow total temperature. This probe yielded a recovery factor of 0.99 +/- 0.01 at Mach 0.6.</li></ul><p></p>
785

Mass Transport Enhancement in Copper Electrodeposition due to Gas Co-Evolution

Gonzalez-Pena, Omar Israel 03 September 2015 (has links)
No description available.
786

Informing Industry End-Users on the Credibility of Model Predictions for Design Decisions

Jakob T Hartl (13145352) 25 July 2022 (has links)
<p>Many industrial organizations invest heavily in modeling and simulation (M&S) to support the design process. The primary business motivation for M&S is as a cheaper and faster alternative for obtaining information towards a better understanding of system behavior or to help with decision making. However, M&S predictions are known to be inexact because models and simulations are mathematical approximations of reality. To ensure that models are applicable for their intended use, organizations must collect evidence that the M&S is credible. Verification, validation, and uncertainty quantification (VVUQ) are the established methods for collecting this evidence. Structured frameworks for building credibility in M&S through VVUQ methods exist in the scientific literature but these frameworks and methods are generally not well developed, nor well implemented in industrial environments. The core motivation of this work is to help make existing VVUQ frameworks more suitable for industry.</p> <p>As part of this objective, this work proposes a new credibility assessment that turns VVUQ results into an intuitive, numerical decision-making metric. This credibility assessment, called the Credibility Index, identifies the important aspects of credibility, extracts the relevant VVUQ results, and converts the results into an overall Credibility Index score (CRED). This CRED score is unique for each specific prediction scenario and serves as an easy-to-digest measure of credibility. The Credibility Index builds upon widely accepted definitions of credibility, well-established VVUQ frameworks, and decision theory.</p> <p>The Credibility Index has been applied to several prediction scenarios for two publicly available benchmark problems and one Rolls-Royce funded subsystem case; all examples relate to the aerodynamic design of turbine-engine compressors. The results from these studies show how the Credibility Index serves as a decision-making metric, supplements traditional M&S outputs, and guides VVUQ efforts. A product feedback study, involving model end-users in industry, compared the Credibility Index to three other established credibility assessments; the study provides evidence that CRED consistently captures all key aspects of information quality when informing end-users on the credibility of model predictions. Due to the industry partnership, this research already has multiple avenues of practical impact, including implementation of the structured VVUQ and credibility framework in an industrial toolkit and workflow. </p>
787

Dimensional Analysis of Electromagnetic Particle Transport in a Fluid Flow under an Electromagnetic Field inspired by Biomedical Applications

Wonseok Heo (13171947) 29 July 2022 (has links)
<p>This study, motivated by biomedical applications such as drug delivery and adsorption, is aimed at describing magneto- and dielectro-phoretic systems via dimensional analysis to quantitatively assess the relative contribution of hydrodynamics, electromagnetism, and particle dynamics. Magnetophoresis and dielectrophoresis, phenomena of magnetic and dielectric particle transports, respectively, have been used in various applications requiring selective collecting or separating magnetic particles, especially in microfluidic systems.</p> <p>A multiphysics computational model for a magnetophoretic system was developed to assess magnetophoretic characteristics. The magnetically induced mobility of the magnetic particles was simulated for a range of parameters relevant in biomedical applications, including the particle and fluid properties, fluid velocity, and geometries of the particle, flow channel, and magnet. With the help of dimensional analysis, dimensionless numbers were introduced to reduce the number of parameters characterizing the transport of the particles suspended in an electrically non-conducting fluid exposed to an external magnetic field. As a result, 14 relevant variables determining the particle capture were reduced to only 3 dimensionless numbers describing the magnetophoretic system. The results from multiphysics models supported this analysis, suggesting a scaling law. The functional relationship among the dimensionless numbers resulted in prediction curves to assess the particle capture. The performance of the magnetophoretic system predicted with the dimensional analysis was verified in comparison with the available experimental data. In addition, the dimensionless numbers introduced here were compared with established numbers in magnetohydrodynamics (MHD).</p> <p>These theoretical and parametrical analyses of the magnetophoretic system were applied to the novel magnetic filter proposed to capture the drug-loaded small magnetic particles (MPs) from the bloodstream during the Intra-Arterial Chemotherapy (IAC). The IAC is a preferred treatment for unresectable hepatocellular carcinoma (HCC), the primary liver cancer. In the IAC procedure, chemotherapeutic agents, e.g. doxorubicin (Dox), are administered via a catheter placed in an artery supplying the tumor. The effectiveness of the IAC, however, is limited due to the passage of excessive chemotherapy agents to the blood circulation after their effect on the tumor, causing systemic toxicity. To remove the excessive drugs, the endovascular filtration devices have been developed. The proposed magnetic filtration device could be deployed from a catheter placed in the hepatic vein or inferior vena cava (IVC) to remove the excessive Dox from the bloodstream. The Ferumoxytol approved by the FDA is one of the types of the ultrasmall superparamagnetic iron oxide (USPIO) particles. The excessive Dox-coated USPIO can be filtered by a magnetic catheter-based device generating an external magnetic field. The filter utilizing magnetic fields is a promising method for therapeutic applications since an influence of magnetic field reaches comparatively wide ranges and magnetic fields do not affect biological tissues. To optimize the design, efficacy, and performance of the proposed magnetic filtration device, numerical models were developed based on the proposed dimensionless numbers characterizing drug transport and binding. Drug adsorption can be optimized by modifying magnetic field distribution and device configuration. To enhance the filtering up to 70-80 % of the excessive drug, multi-stage filters were developed by optimizing magnet configuration and flow patterns. By decreasing the concentration of toxins in the cardiovascular system, the drug dosage can be increased while reducing side effects, thus improving the effectiveness of the IAC treatment.</p> <p>In addition, new dimensionless numbers for dielectrophoresis analogous to magnetophoresis were introduced for a range of applications. The proposed dimensionless numbers for dielectrophoresis were evaluated for several conditions and compared with the previously established numbers in electrohydrodynamics (EHD). </p> <p>This study provides a promising framework for analyzing and predicting performance of various magneto- and dielectro-phoretic systems for a range of applications, particularly in biomedicine such as –drug filtering, targeted drug delivery, or small particle separation–, thus providing a reliable methodology for predicting particle manipulation. </p>
788

COCOON: CO2 & COVID OBSERVATION & NAVIGATION INNOVATIONS FOR GUIDANCE OUT OF THE CLIMATE AND COVID-19 CRISES

Clarice E Nelson (13956267) 13 October 2022 (has links)
<p>In this work, two overarching global crises are addressed with an engineering lens; the COVID-19 pandemic and climate change. Regarding the latter, an investigation is completed into the fluxes of CO2 in the wake of a simple wind farm for identification of potentially beneficial siting of Direct Capture of CO2. In this analysis, large-eddy simulations are used to quantify scalar entrainment in the turbines’ wake for several empirical CO2 profiles. In instances with positive or a combination of CO2 gradients, it was found that the concentration of CO2 increased in wake through downward mixing and entrainment. In a negative CO2 gradient, the opposite was found, with the wind turbine mixing away the increased surface<br> concentration and entraining down lower concentration air from above. These findings were used to make recommendations on scenarios in which wind turbines were beneficial to Direct Capture plants.<br> In addition, as part of the ongoing response to the COVID-19 pandemic, an innovative new technology was designed and constructed; a prototype photoacoustic spectrometer for the rapid detection of viruses. With the vision to become a viral "breathalyzer", the primary stage of development involved the creation of a prototype for proof-of-concept of viral detection using PAS. An extensive literature review was completed to determine optimal<br> design, with several distinct innovations integrated with the end-product in mind; such as a pure silicon resonator cell and a light-emitting diode source for low-cost, portable detection.<br> This was estimated to be of sufficient quality to detect single virions, as found through Finite Element Analysis.<br> Additionally, the validation of a proposed improvement on the medical mask, named Hy-Cu, is shown. Through various tests, Hy-Cu was found to have greater breathability than KN95 or surgical masks, as well as comparable efficiency in filtration of viral droplets.<br> Additionally, the novel inclusion of a diamond-like carbon-coated copper mesh layer resulted in viral inactivation of 99% after a period of 2 hours, allowing Hy-Cu to be safely reused without risk of transmission.<br> </p> <p> </p>
789

Effect of Geometry on the Evolution of DLOFC Transients in High Temperature Helium Loop

Broderick Michael Sieh (18390246) 17 April 2024 (has links)
<p dir="ltr">Generation IV high-temperature gas-cooled reactors (HTGR) are designed to exhibit passive safety under all off-normal circumstances. One such scenario, known as depressurized loss of forced circulation (DLOFC), occurs after a break in the coaxial inlet/outlet header. As the headers are traditionally located at the base of the reactor vessel, the low-density helium coolant is preserved in the core following the initial rupture accident. Upon depressurization, however, air from the surrounding reactor environment slowly enters the coolant channel through molecular diffusion. As the incoming fluid continues to deplete the helium concentration, the onset of natural circulation (ONC) can occur causing bulk air ingress leading to the oxidation and degradation of core components. Therefore, investigating methods to improve the time to ONC is critical in impeding reactor core component damage brought about by DLOFC in an HTGR.</p><p dir="ltr">The Transformational Challenge Reactor (TCR) has similar features to those of an HTGR, but the primary difference is the use of a more complex, additively manufactured (AM) fuel geometry. The more compact, AM, ceramic fuel elements can be conveniently produced with optimally configured channels that suppress the air ingress progress and improve thermofluidic performance. DLOFC and air ingress are experimentally studied in a scaled HTGR flow test setup. Distributed temperature measurements and time to ONC data are collected for the experiments conducted. Multiple geometries are analyzed throughout the investigation. The thermal transient and time to ONC data gathered for the different test geometries and temperatures are compared. The results show that the AM and pebble bed elements deter ONC significantly longer than the baseline geometry representative of a prismatic fuel coolant channel. The AM part delayed ONC as compared to the pebble bed test piece at higher temperatures. The distributed temperature sensor shows intra-leg circulation at higher temperature tests.</p><p dir="ltr">Thermophysical properties of the 316 stainless steel AM component are compared to those of a standard 316 stainless steel round bar. The properties ascertained include the density, emissivity, specific heat, and thermal conductivity. The density of the AM part is 1.5% greater than the density of the standard bar. The emissivity of the AM part is determined to be over three times greater than the emissivity of the polished standard stainless steel round. The specific heat of the AM element is 16% greater than that of the standard 316 stainless steel specific heat. The thermal conductivity of the AM component is measured to be within 1.5% of the standard 316 stainless steel round bar thermal conductivity.</p>
790

Compact air separation system for space launcher / Compact air separation system demonstrator for space launchers using in-fight oxygen collection

Bizzarri, Didier 01 September 2008 (has links)
A compact air separator demonstrator based on centrifugally enhanced distillation has been studied. The full size device is meant to be used on board of a Two Stage To Orbit vehicle launcher. The air separation system must be able to extract oxygen in highly concentrated liquid form (LEA, Liquid Enriched Air) from atmospheric air. The LEA is stored before being used in a subsequent rocket propulsion phase by the second stage of the launcher. Two reference vehicles are defined, one with a subsonic first stage and one with a supersonic first stage. In both cases, oxygen collection is performed during a cruise phase (M 0.7 and M 2.5 respectively). The aim of the project is to demonstrate the feasibility of the air separation system, investigate the separation cycle design, and assess that the separator design selected is suitable for the reference vehicles.<p><p>The project is described from original base ideas to design, construction, extended testing and analysis of experimental results. Preliminary computations for a realistic layout have been performed and the motivations for the choices made during the process are explained. Test rig design, separator design and technical discussion are provided for a subscale pilot unit. Mass transport parameters and flooding limits have been estimated and experimentally measured. Performance has been assessed and shown to be sufficient for the reference Two Stage To Orbit vehicles. The technology developed is found suitable without further optimization, although some volume and mass reduction would be desirable for the supersonic first stage concept. There are many ways of optimisation that can be further investigated. The aim of this program, however, is not to fully optimize the device, but to demonstrate that a device based on a simple, robust, low-risk design is already suitable for the launch vehicles. On top of that analysis, directions for improvements are suggested and their potentials estimated. A complete assessment of those improvements requires further maturation of the technological concept through further testing and practical implementations.<p><p>Directions for future work, general conclusions and a vehicle development roadmap have also been provided.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1071 seconds