• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation et test dans les modèles paramétriques de processus stationnaires

Pham Dinh, Tuan 27 January 1975 (has links) (PDF)
.
2

Distribution spectrale limite pour des matrices à entrées corrélées et inégalité de type Bernstein / Limiting spectral distribution for matrices with correlated entries and Bernstein-type inequality

Banna, Marwa 25 September 2015 (has links)
Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers. On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices. Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes $m$-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra. On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. $beta$-mélangeant).On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de $beta$-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données. Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement $beta$-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de Tropp (2012) pour des sommes de matrices indépendantes / In this thesis, we investigate mainly the limiting spectral distribution of random matrices having correlated entries and prove as well a Bernstein-type inequality for the largest eigenvalue of the sum of self-adjoint random matrices that are geometrically absolutely regular. We are interested in the asymptotic spectral behavior of sample covariance matrices and Wigner-type matrices having correlated entries that are functions of independent random variables. We show that the limiting spectral distribution can be obtained by analyzing a Gaussian matrix having the same covariance structure. This approximation approach is valid for both short and long range dependent stationary random processes just having moments of second order. Our approach is based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation technique. We also develop new tools including a concentration inequality for the spectral measure for matrices having $K$-dependent rows. This method permits to derive, under mild conditions, an integral equation of the Stieltjes transform of the limiting spectral distribution. Applications to matrices whose entries consist of functions of linear processes, ARCH processes or non-linear Volterra-type processes are also given.We also investigate the asymptotic behavior of Gram matrices having correlated entries that are functions of an absolutely regular random process. We give a concentration inequality of the Stieltjes transform and prove that, under an arithmetical decay condition on the absolute regular coefficients, it is almost surely concentrated around its expectation. The study is then reduced to Gaussian matrices, with a close covariance structure, proving then the universality of the limiting spectral distribution. Applications to stationary Harris recurrent Markov chains and to dynamical systems are also given.In the last chapter, we prove a Bernstein type inequality for the largest eigenvalue of the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality is an extension to the matrix setting of the Bernstein-type inequality obtained by Merlev`ede et al. (2009) and a generalization, up to a logarithmic term, of Tropp's inequality (2012) by relaxing the independence hypothesis
3

Parametric approaches for modelling local structure tensor fields with applications to texture analysis / Approches paramétriques pour la modélisation de champs de tenseurs de structure locaux et applications en analyse de texture

Rosu, Roxana Gabriela 06 July 2018 (has links)
Cette thèse porte sur des canevas méthodologiques paramétriques pour la modélisation de champs de tenseurs de structure locaux (TSL) calculés sur des images texturées. Estimé en chaque pixel, le tenseur de structure permet la caractérisation de la géométrie d’une image texturée à travers des mesures d’orientation et d’anisotropie locales. Matrices symétriques semi-définies positives, les tenseurs de structure ne peuvent pas être manipulés avec les outils classiques de la géométrie euclidienne. Deux canevas statistiques riemanniens, reposant respectivement sur les espaces métriques a ne invariant (AI) et log-euclidien (LE), sont étudiés pour leur représentation. Dans chaque cas, un modèle de distribution gaussienne et de mélange associé sont considérés pour une analyse statistique. Des algorithmes d’estimation de leurs paramètres sont proposés ainsi qu’une mesure de dissimilarité. Les modèles statistiques proposés sont tout d’abord considérés pour décrire des champs de TSL calculés sur des images texturées. Les modèles AI et LE sont utilisés pour décrire des distributions marginales de TSL tandis que les modèles LE sont étendus afin de décrire des distributions jointes de TSL et de caractériser des dépendances spatiales et multi-échelles. L’ajustement des modèles théoriques aux distributions empiriques de TSL est évalué de manière expérimentale sur un ensemble de textures composées d’un spectre assez large de motifs structuraux. Les capacités descriptives des modèles statistiques proposés sont ensuite éprouvées à travers deux applications. Une première application concerne la reconnaissance de texture sur des images de télédétection très haute résolution et sur des images de matériaux carbonés issues de la microscopie électronique à transmission haute résolution. Dans la plupart des cas, les performances des approches proposées sont supérieures à celles obtenues par les méthodes de l’état de l’art. Sur l’espace LE, les modèles joints pour la caractérisation des dépendances spatiales au sein d’un champ de TSL améliorent légèrement les résultats des modèles opérant uniquement sur les distributions marginales. La capacité intrinsèque des méthodes basées sur le tenseur de structure à prendre en considération l’invariance à la rotation, requise dans beaucoup d’applications portant sur des textures anisotropes, est également démontrée de manière expérimentale. Une deuxième application concerne la synthèse de champs de TSL. A cet e et, des approches mono-échelle ainsi que des approches pyramidales multi-échelles respectant une hypothèse markovienne sont proposées. Les expériences sont effectuées à la fois sur des champs de TSL simulés et sur des champs de TSL calculés sur des textures réelles. Efficientes dans quelques configurations et démontrant d’un potentiel réel de description des modèles proposés, les expériences menées montrent également une grande sensibilité aux choix des paramètres qui peut s’expliquer par des instabilités d’estimation sur des espaces de grande dimension. / This thesis proposes and evaluates parametric frameworks for modelling local structure tensor (LST) fields computed on textured images. A texture’s underlying geometry is described in terms of orientation and anisotropy, estimated in each pixel by the LST. Defined as symmetric non-negative definite matrices, LSTs cannot be handled using the classical tools of Euclidean geometry. In this work, two complete Riemannian statistical frameworks are investigated to address the representation of symmetric positive definite matrices. They rely on the a ne-invariant (AI) and log-Euclidean (LE) metric spaces. For each framework, a Gaussian distribution and its corresponding mixture models are considered for statistical modelling. Solutions for parameter estimation are provided and parametric dissimilarity measures between statistical models are proposed as well. The proposed statistical frameworks are first considered for characterising LST fields computed on textured images. Both AI and LE models are first employed to handle marginal LST distributions. Then, LE models are extended to describe joint LST distributions with the purpose of characterising both spatial and multiscale dependencies. The theoretical models’ fit to empirical LST distributions is experimentally assessed for a texture set composed of a large diversity of patterns. The descriptive potential of the proposed statistical models are then assessed in two applications. A first application consists of texture recognition. It deals with very high resolution remote sensing images and carbonaceous material images issued from high resolution transmission electron microscopy technology. The LST statistical modelling based approaches for texture characterisation outperform, in most cases, the state of the art methods. Competitive texture classification performances are obtained when modelling marginal LST distributions on both AI and LE metric spaces. When modelling joint LST distributions, a slight gain in performance is obtained with respect to the case when marginal distributions are modelled. In addition, the LST based methods’ intrinsic ability to address the rotation invariance prerequisite that arises in many classification tasks dealing with anisotropic textures is experimentally validated as well. In contrast, state of the art methods achieve a rather pseudo rotation invariance. A second application concerns LST field synthesis. To this purpose, monoscale and multiscale pyramidal approaches relying on a Markovian hypothesis are developed. Experiments are carried out on toy LST field examples and on real texture LST fields. The successful synthesis results obtained when optimal parameter configurations are employed, are a proof of the real descriptive potential of the proposed statistical models. However, the experiments have also shown a high sensitivity to the parameters’ choice, that may be due to statistical inference limitations in high dimensional spaces.
4

Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis / Algorithmes hiérarchiques rapides pour l’approximation de rang faible des matrices, applications à la physique des matériaux, la géostatistique et l’analyse de données

Blanchard, Pierre 16 February 2017 (has links)
Les techniques avancées pour l’approximation de rang faible des matrices sont des outils de réduction de dimension fondamentaux pour un grand nombre de domaines du calcul scientifique. Les approches hiérarchiques comme les matrices H2, en particulier la méthode multipôle rapide (FMM), bénéficient de la structure de rang faible par bloc de certaines matrices pour réduire le coût de calcul de problèmes d’interactions à n-corps en O(n) opérations au lieu de O(n2). Afin de mieux traiter des noyaux d’interaction complexes de plusieurs natures, des formulations FMM dites ”kernel-independent” ont récemment vu le jour, telles que les FMM basées sur l’interpolation polynomiale. Cependant elles deviennent très coûteuses pour les noyaux tensoriels à fortes dimensions, c’est pourquoi nous avons développé une nouvelle formulation FMM efficace basée sur l’interpolation polynomiale, appelée Uniform FMM. Cette méthode a été implémentée dans la bibliothèque parallèle ScalFMM et repose sur une grille d’interpolation régulière et la transformée de Fourier rapide (FFT). Ses performances et sa précision ont été comparées à celles de la FMM par interpolation de Chebyshev. Des simulations numériques sur des cas tests artificiels ont montré que la perte de précision induite par le schéma d’interpolation était largement compensées par le gain de performance apporté par la FFT. Dans un premier temps, nous avons étendu les FMM basées sur grille de Chebyshev et sur grille régulière au calcul des champs élastiques isotropes mis en jeu dans des simulations de Dynamique des Dislocations (DD). Dans un second temps, nous avons utilisé notre nouvelle FMM pour accélérer une factorisation SVD de rang r par projection aléatoire et ainsi permettre de générer efficacement des champs Gaussiens aléatoires sur de grandes grilles hétérogènes. Pour finir, nous avons développé un algorithme de réduction de dimension basé sur la projection aléatoire dense afin d’étudier de nouvelles façons de caractériser la biodiversité, à savoir d’un point de vue géométrique. / Advanced techniques for the low-rank approximation of matrices are crucial dimension reduction tools in many domains of modern scientific computing. Hierarchical approaches like H2-matrices, in particular the Fast Multipole Method (FMM), benefit from the block low-rank structure of certain matrices to reduce the cost of computing n-body problems to O(n) operations instead of O(n2). In order to better deal with kernels of various kinds, kernel independent FMM formulations have recently arisen such as polynomial interpolation based FMM. However, they are hardly tractable to high dimensional tensorial kernels, therefore we designed a new highly efficient interpolation based FMM, called the Uniform FMM, and implemented it in the parallel library ScalFMM. The method relies on an equispaced interpolation grid and the Fast Fourier Transform (FFT). Performance and accuracy were compared with the Chebyshev interpolation based FMM. Numerical experiments on artificial benchmarks showed that the loss of accuracy induced by the interpolation scheme was largely compensated by the FFT optimization. First of all, we extended both interpolation based FMM to the computation of the isotropic elastic fields involved in Dislocation Dynamics (DD) simulations. Second of all, we used our new FMM algorithm to accelerate a rank-r Randomized SVD and thus efficiently generate multivariate Gaussian random variables on large heterogeneous grids in O(n) operations. Finally, we designed a new efficient dimensionality reduction algorithm based on dense random projection in order to investigate new ways of characterizing the biodiversity, namely from a geometric point of view.
5

Distribution spectrale limite pour des matrices à entrées corrélées et inégalité de type Bernstein / Limiting spectral distribution for matrices with correlated entries and Bernstein-type inequality

Banna, Marwa 25 September 2015 (has links)
Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers. On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices. Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes $m$-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra. On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. $beta$-mélangeant).On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de $beta$-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données. Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement $beta$-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de Tropp (2012) pour des sommes de matrices indépendantes / In this thesis, we investigate mainly the limiting spectral distribution of random matrices having correlated entries and prove as well a Bernstein-type inequality for the largest eigenvalue of the sum of self-adjoint random matrices that are geometrically absolutely regular. We are interested in the asymptotic spectral behavior of sample covariance matrices and Wigner-type matrices having correlated entries that are functions of independent random variables. We show that the limiting spectral distribution can be obtained by analyzing a Gaussian matrix having the same covariance structure. This approximation approach is valid for both short and long range dependent stationary random processes just having moments of second order. Our approach is based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation technique. We also develop new tools including a concentration inequality for the spectral measure for matrices having $K$-dependent rows. This method permits to derive, under mild conditions, an integral equation of the Stieltjes transform of the limiting spectral distribution. Applications to matrices whose entries consist of functions of linear processes, ARCH processes or non-linear Volterra-type processes are also given.We also investigate the asymptotic behavior of Gram matrices having correlated entries that are functions of an absolutely regular random process. We give a concentration inequality of the Stieltjes transform and prove that, under an arithmetical decay condition on the absolute regular coefficients, it is almost surely concentrated around its expectation. The study is then reduced to Gaussian matrices, with a close covariance structure, proving then the universality of the limiting spectral distribution. Applications to stationary Harris recurrent Markov chains and to dynamical systems are also given.In the last chapter, we prove a Bernstein type inequality for the largest eigenvalue of the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality is an extension to the matrix setting of the Bernstein-type inequality obtained by Merlev`ede et al. (2009) and a generalization, up to a logarithmic term, of Tropp's inequality (2012) by relaxing the independence hypothesis
6

Real-time multi-target tracking : a study on color-texture covariance matrices and descriptor/operator switching / Suivi temps-réel : matrices de covariance couleur-texture et commutation automatique de descripteur/opérateur

Romero Mier y Teran, Andrés 03 December 2013 (has links)
Ces technologies ont poussé les chercheurs à imaginer la possibilité d'automatiser et émuler les capacités de perception visuels des animaux et de l'homme lui-même. Depuis quelques décennies le domaine de la vision par ordinateur a essayé plusieurs approches et une vaste gamma d'applications a été développée avec un succès partielle: la recherche des images basé sur leur contenu, la exploration de donnés à partir des séquences vidéo, la ré-identification des objets par des robots, etc. Quelques applications sont déjà sur le marché et jouissent déjà d'un certain succès commercial.La reconnaissance visuelle c'est un problème étroitement lié à l'apprentissage de catégories visuelles à partir d'un ensemble limité d'instances. Typiquement deux approches sont utilisées pour résoudre ce problème: l'apprentissage des catégories génériques et la ré-identification d'instances d'un objet un particulière. Dans le dernier cas il s'agit de reconnaître un objet ou personne en particulière. D'autre part, la reconnaissance générique s'agit de retrouver tous les instances d'objets qui appartiennent à la même catégorie conceptuel: tous les voitures, les piétons, oiseaux, etc.Cette thèse propose un système de vision par ordinateur capable de détecter et suivre plusieurs objets dans les séquences vidéo. L'algorithme pour la recherche de correspondances proposé se base sur les matrices de covariance obtenues à partir d'un ensemble de propriétés des images (couleur et texture principalement). Son principal avantage c'est qu'il utilise un descripteur qui permet l'introduction des sources d'information très hétérogènes pour représenter les cibles. Cette représentation est efficace pour le suivi d'objets et son ré-identification.Quatre contributions sont introduites dans cette thèse.Tout d'abord cette thèse s'intéresse à l'invariance des algorithmes de suivi face aux changements du contexte. Nous proposons ici une méthodologie pour mesurer l’importance de l'information couleur en fonction de ses niveaux d’illumination et saturation. Puis, une deuxième partie se consacre à l'étude de différentes méthodes de suivi, ses avantages et limitations en fonction du type d'objet à suivre (rigide ou non rigide par exemple) et du contexte (caméra statique ou mobile). Le méthode que nous proposons s'adapte automatiquement et utilise un mécanisme de commutation entre différents méthodes de suivi qui considère ses qualités complémentaires. Notre algorithme se base sur un modèle de covariance qui fusionne les informations couleur-texture et le flot optique (KLT) modifié pour le rendre plus robuste et adaptable face aux changements d’illumination. Une deuxième approche se appuie sur l'analyse des différents espaces et invariants couleur à fin d'obtenir un descripteur qui garde un bon équilibre entre pouvoir discriminant et robustesse face aux changements d'illumination.Une troisième contribution porte sur le problème de suivi multi-cibles ou plusieurs difficultés apparaissent : la confusion d'identités, les occultations, la fusion et division des trajectoires-détections, etc.La dernière partie se consacre à la vitesse des algorithmes à fin de fournir une solution rapide et utilisable dans les applications embarquées. Cette thèse propose une série d'optimisations pour accélérer la mise en correspondance à l'aide de matrices de covariance. Transformations de mise en page de données, la vectorisation des calculs (à l'aide d'instructions SIMD) et certaines transformations de boucle permettent l'exécution en temps réel de l'algorithme non seulement sur les grands processeurs classiques de Intel, mais aussi sur les plateformes embarquées (ARM Cortex A9 et Intel U9300). / Visual recognition is the problem of learning visual categories from a limited set of samples and identifying new instances of those categories, the problem is often separated into two types: the specific case and the generic category case. In the specific case the objective is to identify instances of a particular object, place or person. Whereas in the generic category case we seek to recognize different instances that belong to the same conceptual class: cars, pedestrians, road signs and mugs. Specific object recognition works by matching and geometric verification. In contrast, generic object categorization often includes a statistical model of their appearance and/or shape.This thesis proposes a computer vision system for detecting and tracking multiple targets in videos. A preliminary work of this thesis consists on the adaptation of color according to lighting variations and relevance of the color. Then, literature shows a wide variety of tracking methods, which have both advantages and limitations, depending on the object to track and the context. Here, a deterministic method is developed to automatically adapt the tracking method to the context through the cooperation of two complementary techniques. A first proposition combines covariance matching for modeling characteristics texture-color information with optical flow (KLT) of a set of points uniformly distributed on the object . A second technique associates covariance and Mean-Shift. In both cases, the cooperation allows a good robustness of the tracking whatever the nature of the target, while reducing the global execution times .The second contribution is the definition of descriptors both discriminative and compact to be included in the target representation. To improve the ability of visual recognition of descriptors two approaches are proposed. The first is an adaptation operators (LBP to Local Binary Patterns ) for inclusion in the covariance matrices . This method is called ELBCM for Enhanced Local Binary Covariance Matrices . The second approach is based on the analysis of different spaces and color invariants to obtain a descriptor which is discriminating and robust to illumination changes.The third contribution addresses the problem of multi-target tracking, the difficulties of which are the matching ambiguities, the occlusions, the merging and division of trajectories.Finally to speed algorithms and provide a usable quick solution in embedded applications this thesis proposes a series of optimizations to accelerate the matching using covariance matrices. Data layout transformations, vectorizing the calculations (using SIMD instructions) and some loop transformations had made possible the real-time execution of the algorithm not only on Intel classic but also on embedded platforms (ARM Cortex A9 and Intel U9300).

Page generated in 0.0765 seconds