1 |
The Calculation of Phonon Dispersion Curves in Metals With Application to AluminumKeech, George Howard 01 1900 (has links)
Pages 6 and 7 are labelled as the same page. / <p> The purpose of this work is to calculate phonon dispersion curves in metals paying particular attention to the evaluation of a new electron-ion matrix element by use
of orthogonalized plane waves (OPW). The dynamic role of the electrons in screening the electron-ion interaction has been studied. Our formalism makes use of recent developments
in the theory of the many-body problem. Applications of our theory have been made to aluminum. The pseudopotential part of the OPW electron-ion matrix element produced an
overscreening of the frequency modes. Comparison is made to the use of the Bardeen matrix element. Our results strongly suggest that this calculation applied to lead would
explain the magnitude of Kohn kinks observed by Brockhouse et al. (B 62a).</p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
Combined Measurement of Single Top-Quark Production in the s and t-Channel with the ATLAS Detector and Effective Field Theory InterpretationStamm, Sören 02 August 2018 (has links)
In dieser Arbeit wird eine kombinierte Messung der elektro-schwachen Produktion einzelner Top-Quarks im s- und t-Kanal vorgestellt. Der analysierte Datensatz von Proton-Proton-Kollisionsereignissen wurde im Jahr 2012 mit dem ATLAS Detektor am Large Hadron Collider bei einer Schwerpunktsenergie von 8 TeV aufgezeichnet und entspricht einer integrierten Luminosität von 20.3 fb^{-1}. Die Ereignisauswahl beschränkt sich auf Ereignisse mit einem isolierten Elektron oder Myon und zwei Jets. Mit Hilfe der Matrix Element Methode werden Prozess-Likelihoods berechnet. Aus diesen wird eine Diskriminante gebildet um Signal- und Untergrundereignisse voneinander zu trennen. Die Wirkungsquerschnitte für die Produktion einzelner Top-Quarks wurden mittels eines kombinierten Maximum Likelihoods Fits zu sigma_{s} = 4,9 +- 1,7 pb und sigma_{t} = 82,32^{+7,0}_{-5,5} pb bestimmt. Die Korrelation zwischen beiden Messungen beträgt 8%. Diese beiden Ergebnisse werden zusammen mit einer unabhängigen Messung der assoziierten Wt Produktion verwendet um zwei Parameter, cquer_{phiq} und cquer_{qq}, im Rahmen einer effektiven Feldtheorie zu bestimmen. Notwendige Akzeptanzkorrekturen wurden mit Hilfe schneller und vereinfachter Detektorsimulationen ermittelt. Diese Korrekturen werden in dem statistischen Modell zur Bestimmung der effektiven Feldtheorie-Parametern berücksichtigt. Die kleinsten Intervalle, welche 95,5% des gesamten Wahrscheinlichkeitsbereichs entsprechen, sind -0,132 < cquer_{phiq} < 0,048 und -0,0283 < cquer_{qq} < 0,0062 für die beiden Kopplungsparameter. / This thesis presents a combined measurement of single top-quark production in the s and t-channel with the ATLAS detector at the Large Hadron Collider. The 2012 data set of proton--proton collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb^{-1} is used. The event selection for both channels requires one isolated electron or muon and two jets in the final state. In order to separate signal from background events, a discriminant variable is built from likelihoods obtained with the matrix element method. The cross section for both channels are determined by a combined maximum likelihood fit, which yields sigma_{s} = 4.9 +- 1.7 pb and sigma_{t} = 82.32^{+7.0}_{-5.5} pb for the s-channel and t-channel, respectively. The correlation of the two cross section measurements is 8%. These results together with an independent measurement of the associated Wt production are used to set limits on two parameters, cbar_{phiq} and cbar_{qq}, within the framework of an effective field theory. Acceptance corrections are derived as a function of the model parameters by using fast and simplified detector simulations. These corrections are included in the statistical model and the smallest intervals that correspond to 95.5% probability are -0.132 < cbar_{phiq} < 0.048 and -0.0283 < cbar_{qq} < 0.0062 for the two parameters.
|
3 |
Measurement of the Partial Branching Fraction for Inclusive Semileptonic B Meson Decays to Light Hadrons B-&gt;Xu l nu and an Improved Determination of the Quark-Mixing Matrix Element |V_ub|Volk, Alexei 15 September 2009 (has links) (PDF)
This thesis presents an analysis of inclusive semileptonic $B \to X_u e \nu$ decays using approximately 454 million $\Upsilon(4S) \to B \bar{B}$ decays collected during the years 1999 to 2008 with the BABAR detector.
The electron energy, $E_e$, and the invariant mass squared of the electron-neutrino pair,$ q^2$, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons.
The final hadronic state,$ X_u$, consists of a sum of many hadronic channels, each of which contains at least one $u$ quark.
The variables $q^2$ and $E_e$ are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, $s_h^{max}$.
Using these kinematic quantities, the partial branching fraction, $\Delta BR(B \to X_u e \nu)$, unfolded for detector effects, is measured to be
$\Delta BR(E_e&gt;2.0 GeV, s_h^{max}&lt;3.52 GeV^2) = (3.33 \pm 0.18 \pm 0.21) \times 10^{-4}
in the $\Upsilon(4S)$ and
\Delta \tilde{\BR}(\tilde E_e&gt;1.9 GeV, \tilde {s}^{max}_{h} &lt; 3.5 GeV^2) = (4.57 \pm 0.24 \pm 0.32) \times 10^{-4}
in the $B$ meson rest frames. The quoted errors are statistical and systematic, respectively.
The CKM matrix element $|V_{ub}|$ is determined from the measured $\Delta \tilde{\BR}$ using theoretical calculation based on Heavy Quark Expansion. The result is
$|V_{ub}| = (4.19 \pm 0.18{}^{+0.26}_{-0.20} {}^{+0.26}_{-0.25}) \times 10^{-3}, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively.
|
4 |
Search for the Standard Model Higgs boson produced in association with tt and decaying into bb at 8 TeV with the ATLAS detector using the Matrix Element MethodNackenhorst, Olaf 08 June 2015 (has links)
No description available.
|
5 |
Procura do bóson de Higgs no canal de decaimento H → W+ W- →+ν-ν utilizando a técnica de elemento de matriz no experimento CMS do CERN / Search for the Higgs boson in the decay channel H → W+ W- →+ν-ν, using the matrix element method in the CMS experiment at CERN.Analu Verçosa Custódio 31 October 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação apresento as atividades que foram desenvolvidas durante o período de mestrado, que teve como objetivo o desenvolvimento da Técnica de Análise de dados através
do Método de Elemento de Matriz (ME) para procura do Bóson de Higgs no experimento CMS. A proposta foi utilizar uma técnica de análise de dados relativamente nova, conhecida como Método do Elemento de Matriz (ME). Esta técnica foi desenvolvida e utilizada recentemente para aplicação na física do quark top nos experimentos D0 e CDF do Tevatron (FERMILAB). Entretanto, ainda não existem estudos envolvendo a aplicação da mesma para a física do Higgs no LHC. O método de ME foi aplicado na procura do Higgs no canal de decaimento
H → W+ W- →+ν-ν, qual os estudos atuais apontam como sendo um dos canais com maior potencial de descoberta, principalmente nesta fase inicial em que a estatística ainda será muito limitada. / We present the activities that were developed during the Master, which aimed at the development of the data analysis technique using the Matrix Element Method (ME) in the Higgs boson search in the CMS experiment. The proposal was to use a data analysis technique relatively new known as Matrix Element Method (ME). This technique was developed and used recently for application in the top quark physics in D0 and CDF experiments at the
Tevatron (Fermilab). However, there are no studies involving the use of it in the physics of the Higgs at the LHC. The ME method was applied in the Higgs boson search in the decay channel
H → W+ W- →+ν-ν , which the current studies indicate as being one of the channels with the highest potential for discovery, especially at this early stage in which the statistic is still very
limited.
|
6 |
Procura do bóson de Higgs no canal de decaimento H → W+ W- →+ν-ν utilizando a técnica de elemento de matriz no experimento CMS do CERN / Search for the Higgs boson in the decay channel H → W+ W- →+ν-ν, using the matrix element method in the CMS experiment at CERN.Analu Verçosa Custódio 31 October 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação apresento as atividades que foram desenvolvidas durante o período de mestrado, que teve como objetivo o desenvolvimento da Técnica de Análise de dados através
do Método de Elemento de Matriz (ME) para procura do Bóson de Higgs no experimento CMS. A proposta foi utilizar uma técnica de análise de dados relativamente nova, conhecida como Método do Elemento de Matriz (ME). Esta técnica foi desenvolvida e utilizada recentemente para aplicação na física do quark top nos experimentos D0 e CDF do Tevatron (FERMILAB). Entretanto, ainda não existem estudos envolvendo a aplicação da mesma para a física do Higgs no LHC. O método de ME foi aplicado na procura do Higgs no canal de decaimento
H → W+ W- →+ν-ν, qual os estudos atuais apontam como sendo um dos canais com maior potencial de descoberta, principalmente nesta fase inicial em que a estatística ainda será muito limitada. / We present the activities that were developed during the Master, which aimed at the development of the data analysis technique using the Matrix Element Method (ME) in the Higgs boson search in the CMS experiment. The proposal was to use a data analysis technique relatively new known as Matrix Element Method (ME). This technique was developed and used recently for application in the top quark physics in D0 and CDF experiments at the
Tevatron (Fermilab). However, there are no studies involving the use of it in the physics of the Higgs at the LHC. The ME method was applied in the Higgs boson search in the decay channel
H → W+ W- →+ν-ν , which the current studies indicate as being one of the channels with the highest potential for discovery, especially at this early stage in which the statistic is still very
limited.
|
7 |
A study of neutron pairing correlations using the 136Ba(p, t) reactionJespere Calderone, Nzobadila Ondze January 2020 (has links)
>Magister Scientiae - MSc / Observation of neutrinoless double beta decay (0 ) is currently the only
means by which one could establish the Majorana nature of neutrinos. Additionally,
such an observation would determine the absolute neutrino mass
scale. However, this requires that the matrix element for a given 0 decay
process is accurately calculated. The objective of this project is to provide
useful nuclear structure information that aim to improve future theoretical
calculations for the nuclear matrix element (NME) of 136Xe 0 decay to
136Ba. We studied neutron pairing correlations in 134Ba using the 136Ba(p; t)
reaction to stringently test the Bardeen-Cooper-Schrie er (BCS) approximation
in the A = 136 mass region. This is because many theoretical calculations
of the NME's for 0 decay are performed using the quasiparticle
random phase approximation (QRPA), which uses the BCS approximation
to describe the ground states of the even-even parent and daughter nuclei.
Our results show a signi cant fragmentation of the neutron-pair transfer to
excited 0+ states, implying a breakdown of the BCS approximation in this
mass region.
|
8 |
Field Quantization for Radiative Decay of Plasmons in Finite and Infinite GeometriesBagherian, Maryam 18 March 2019 (has links)
We investigate field quantization in high-curvature geometries. The models and calculations can help with understanding the elastic and inelastic scattering of photons and electrons in nanostructures and probe-like metallic domains. The results find important applications in high-resolution photonic and electronic modalities of scanning probe microscopy, nano-optics, plasmonics, and quantum sensing.
Quasistatic formulation, leading to nonretarded quantities, is employed and justified on the basis of the nanoscale, here subwavelength, dimensions of the considered domains of interest.
Within the quasistatic framework, we represent the nanostructure material domains with frequency-dependent dielectric functions. Quantities associated with the normal modes of the electronic systems, the nonretarded plasmon dispersion relations, eigenmodes, and fields are then calculated for several geometric entities of use in nanoscience and nanotechnology.
From the classical energy of the charge density oscillations in the modeled nanoparticle, we then derive the Hamiltonian of the system, which is used for quantization.
The quantized plasmon field is obtained and, employing an interaction Hamiltonian derived from the first-order perturbation theory within the hydrodynamic model of an electron gas, we obtain an analytical expression for the radiative decay rate of the plasmons.
The established treatment is applied to multiple geometries to investigate the quantized charge density oscillations on their bounding surfaces. Specifically, using one sheet of a two-sheeted hyperboloid of revolution, paraboloid of revolution, and cylindrical domains, all with one infinite dimension, and the finite spheroidal and toroidal domains are treated.
In addition to a comparison of the paraboloidal and hyperboloidal results, interesting similarities are observed for the paraboloidal domains with respect to the surface modes and radiation patterns of a prolate spheroid, a finite geometric domain highly suitable for modeling of nanoparticles such as quantum dots. The prolate and oblate spheroidal calculations are validated by comparison to the spherical case, which is obtained as a special case of a spheroid.
In addition to calculating the potential and field distributions, and dispersion relations, we study the angular intensity and the relation between the emission angle with the rate of radiative decay.
The various morphologies are compared for their plasmon dispersion properties, field distributions, and radiative decay rates, which are shown to be consistent.
For the specific case of a nanoring, modeled in the toroidal geometry, significant complexity arises due to an inherent coupling among the various modes. Within reasonable approximations to decouple the modes, we study the radiative decay channel for a vacuum bounded single solid nanoring by quantizing the fields associated with charge density oscillations on the nanoring surface. Further suggestions are made for future studies. The obtained results are relevant to other material domains that model a nanostructure such as a probe tip, quantum dot, or nanoantenna.
|
9 |
Determination of the CKM matrix element |V cb|, the B -> X s gamma decay rate, and the b-quark massBernlochner, Florian 02 August 2012 (has links)
In dieser Arbeit wird die Messung zweier fundamentaler Parameter des Standardmodells der Teilchenphysik diskutiert: der Betrag des CKM Matrixelements Vcb und die b-Quarkmasse. / In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element Vcb, and the b-quark mass.
|
10 |
Automating methods to improve precision in Monte-Carlo event generation for particle colliders / Automatisierung von Methoden zur Verbesserung der Praezision bei der Monte-Carlo Eventgeneration fuer TeilchenbeschleunigerexperimenteGleisberg, Tanju 24 April 2008 (has links) (PDF)
This thesis concerns with numerical methods for a theoretical description of high energy particle scattering experiments. It focuses on fixed order perturbative calculations, i.e. on matrix elements and scattering cross sections at leading and next-to-leading order. For the leading order a number of algorithms for the matrix element generation and the numeric integration over the phase space are studied and implemented in a computer code, which allows to push the current limits on the complexity of the final state and the precision. For next-to-leading order calculations necessary steps towards a fully automated treatment are performed. A subtraction method that allows a process independent regularization of the divergent virtual and real corrections is implemented, and a new approach for a semi-numerically evaluation of one-loop amplitudes is investigated.
|
Page generated in 0.114 seconds