• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 36
  • 26
  • 23
  • 22
  • 20
  • 20
  • 18
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Canonical Decomposition of Wing Kinematics for a Straight Flying Insectivorous Bat

Fan, Xiaozhou 22 January 2018 (has links)
Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. It is shown that Proper Orthogonal Decomposition (POD) can be used to effectively to filter the measured kinematics to eliminate outliers which usually manifest as low energy higher POD modes, but which can impact the stability of aerodynamic simulations. Through aerodynamic simulations it is established that the first two modes from the POD analysis recover 62% of the lift, and reflect a drag force instead of thrust, whereas the first three modes recover 77% of the thrust and even more lift than the native kinematics. This demonstrates that mode 2, which features a combination of spanwise twisting (pitching) and chordwise cambering, is critical for the generation of lift, and more so for thrust. Based on these inferences, it is concluded that the first 7 modes are sufficient to represent the full native kinematics. The aerodynamic simulations are conducted using the immersed boundary method on 128 processors. They utilize a grid of 31 million cells and the bat wing is represented by about 50000 surface elements. The movement of the immersed wing surface is defined by piecewise cubic splines that describe the time evolution of each control point on the wing. The major contribution of this work is the decomposition of the native kinematics into canonical flapping wing physical descriptors comprising of the flapping motion, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests a Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of outer part of the wing ( hand wing ) with respect to the inner part of the wing ( arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds. / MS
72

UAV Group Autonomy In Network Centric Environment

Suresh, M 07 1900 (has links) (PDF)
It is a well-recognized fact that unmanned aerial vehicles are an essential element in today’s network-centric integrated battlefield environment. Compared to solo UAV missions, multiple unmanned aerial vehicles deployed in co-operative mode, offer many advantages that has motivated UAV researchers all over the world to evolve concept of operations that aims in achieving a paradigm shift from traditional ”dull” missions to perform ”dirty” and ”dangerous” missions. In future success of a mission will depend on interaction among UAV groups with no interaction with any ground entity. To reach this capability level, it is necessary for researchers, to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. The thesis is in four parts: (i) Development of an organized framework to realize the goal of achieving fully autonomous systems. (ii) Design of UAV grouping algorithm and coordination tactics for ground attack missions. (iii) Cooperative network management in GPS denied environments. (iv) UAV group tactical path and goal re-plan in GPS denied wide area urban environments. This research thesis represents many first steps taken in the study of autonomous UAV systems and in particular group autonomy. An organized framework for autonomous mission control level by defining various sublevels, classifying the existing solutions and highlighting the various research opportunities available at each level is discussed. Significant contribution to group autonomy research, by providing first of its kind solution for UAV grouping based on Dubins’ path, establishing GPS protected wireless network capable of operating in GPS denied environment and demonstration of group tactical path and goal re-plan in a layered persistent ISR mission is presented. Algorithms discussed in this thesis are generic in nature and can be applied to higher autonomous mission control levels, involving strategic decisions among UAVs, satellites and ground forces in a network centric environment.
73

Entwicklung eines UAV-basierten Systems zur Rehkitzsuche und Methoden zur Detektion und Georeferenzierung von Rehkitzen in Thermalbildern: Der Fliegende Wildretter

Israel, Martin 05 December 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines UAV-basierten Systems und der zugehörigen Methodenentwicklung zur automatisierten Rehkitzsuche in Feldern. Jedes Jahr sterben sehr viele Wildtiere -- vor allem Rehkitze -- während dem Mähen von landwirtschaftlich genutzten Wiesen. Mit herkömmlichen Methoden ist es unter vertretbarem Aufwand bisher nicht gelungen, die Zahl der Mähopfer auf ein erträgliches Maß zu reduzieren. Mit der Entwicklung des in dieser Arbeit beschriebenen "Fliegenden Wildretters" könnte sich das in Zukunft ändern. Mit Hilfe einer Wärmebildkamera aus der Vogelperspektive lässt sich ein warmes Tier, wie ein Rehkitz, wesentlich leichter aufspüren, als mit herkömmlichen Methoden. Auslegung und Aufbau des Systems orientieren sich speziell an dem Aspekt, wie eine möglichst hohe Flächenleistung erreicht werden kann, ohne dabei Tiere zu übersehen. Drei Faktoren sind besonders wichtig, um dieses Ziel zu erreichen: Eine hohe Geschwindigkeit des gesamten Suchprozesses, eine zuverlässige Detektion und eine präzise Lokalisierung der Tiere. Durch Automatisierung lassen sich viele Teilaspekte dieser Aufgabe beschleunigen. Deshalb werden im Rahmen dieser Arbeit verschiedene Methoden entwickelt und validiert, unter anderem zur Flugplanung, Flugsteuerung, Bilddaten-Auswertung, Objekt-Detektion und Georeferenzierung. Die Kenntnis der Rehkitz-Merkmale und der Einflussgrößen bei der Thermalbilderfassung helfen, die Qualität der Detektion zu erhöhen, weshalb sie in dieser Arbeit besondere Berücksichtigung finden. Auch die Präzision der Lokalisierung lässt sich durch Kenntnis der Einflussgrößen auf die Positions- und Lagemessung des UAVs erhöhen. Anhand von umfangreichen Messkampagnen wird die Funktion und Qualität des Systems unter realen Bedingungen belegt.
74

Predicting Drag Polars For Micro Air Vehicles

Luke, Mark Elden 03 November 2003 (has links) (PDF)
Drag polars for three Micro Air Vehicles (MAVs) were measured at Reynolds numbers of 70,000, 50,000, 30,000, and 10,000 and compared to predictions generated using the classical approach. The MAVs tested had different configurations and aspect ratios varying from 1.2 to 1.6 and ratios of wetted surface area to planform area from 2.6 to 3.9. A force balance was used to measure the lift and drag on the MAVs at angles of attack ranging from -5 degrees (or -10 degrees) to 10 degrees. The force balance allowed the MAVs to rotate in the pitching axis. The MAV angle of attack was set using an elevator installed on the MAV and controlled using a standard radio control used by RC plane enthusiasts. Uncertainty analysis performed on the data showed the uncertainty for high Reynolds numbers was dominated by velocity uncertainty, and uncertainty for the lower Reynolds numbers was dominated by uncertainty in the force measurements. Agreement between measured and predicted drag polars was good with the measured drag never being more than two times the predicted drag. For the majority of the tests, the drag coefficients followed the expected Reynolds number trend: increasing with decreasing Reynolds number.
75

Adaptive Quaternion Control for a Miniature Tailsitter UAV

Knoebel, Nathan B. 30 August 2007 (has links) (PDF)
The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles are accompanied with control challenges due to the two different flight regimes. Problems with the conventional attitude representation arise in estimation and control as the system departs from level flight conditions. Furthermore, changing dynamics and limitations in modeling and sensing give rise to significant attitude control design challenges. Restrictions in computation also result from the limited size and weight capacity of the miniature airframe. In this research, the inherent control challenges discussed above are addressed with a computationally efficient adaptive quaternion control algorithm. A backstepping method for model cancellation and consistent tracking of reference model attitude dynamics is derived. This is used in conjunction with two different algorithms designed for the identification of system parameters. For a metric of baseline performance, gain-scheduled quaternion feedback control is developed. With a regularized data-weighting recursive least-squares parameter estimation algorithm, the adaptive quaternion controller is shown to be better than the baseline method in simulation and hardware results. This method is also shown to produce universal performance for all aircraft with the three conventional control surface actuators (aileron, elevator, and rudder) barring saturation and assuming accurate system identification. Testing of attitude control algorithms requires development in quaternion-based navigational control and attitude estimation. A novel technique for hover north/east position control is derived. Also, altitude tracking in hover, given an inconsistent thrust system, is addressed with an original method of on-line throttle system identification. Means for quaternion-based level flight control are produced from adaptations made to existing techniques employed in the Brigham Young University Multi-Agent Coordination and Control Lab. Also generated are simple trajectories for transitions between flight modes. A method for the estimation of quaternion attitude is developed, which uses multiple sensors combined in a filtering technique similar to the fixed-gain Kalman filter. Simulation and hardware results of these methods are presented for concept validation. A discussion of the development and production of these testing means (a simulation environment and hardware flight test system) is provided. In culmination, a fully autonomous miniature tailsitter system is produced with results demonstrating its various capabilities.

Page generated in 0.0385 seconds