Spelling suggestions: "subject:"medica truncated"" "subject:"medica truncation""
31 |
Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression / Des changements ploïdie-dépendant dans l’épigénome de cellules symbiotiques sont corrélés avec des profils spécifiques d’expression géniqueNagymihály, Marianna 15 November 2017 (has links)
Les légumineuses peuvent interagir avec les bactéries du sol de la famille des Rhizobiaceae. Cette interaction aboutit à la formation d'un organe spécialisé appelé nodosité. Au sein des cellules symbiotiques des nodosités, les rhizobia sont capables de fixer l'azote atmosphérique et de la convertir en ammoniac, qui est une source d'azote assimilable par les plantes. Chez la Légumineuse Medicago truncatula, les cellules symbiotiques produisent une large famille de peptides riches en cystéines appelées (NCRs) spécifiquement exprimés dans les nodosités. Ces NCRs induisent la différenciation des bactéroïdes qui se traduit par un allongement cellulaire couplé à une forte endoréplication du génome (les bactéroïdes deviennent polyploïdes) contribuant ainsi à une augmentation importante de la taille des cellules, ainsi qu’une perméabilité membranaire accrue et une perte de toute capacité reproductrice. Les peptides NCRs ressemblent à des défensines, des peptides antimicrobiens, acteurs clés de l’immunité innée. L'analyse de l'expression de 334 gènes NCR dans 267 différentes conditions expérimentales en utilisant la base de données MtGEA (Medicago truncatula Gene Expression Atlas) a révélé que l'ensemble des gènes NCR testés (sauf quatre) n'est exprimé que dans les nodosités, ils ne sont pas exprimés dans d’autres organes de la plante, ni lors d’une infection par des agents pathogènes. De plus l’expression des NCRs n’est induite en réponse à aucune interaction biotique ou abiotique testée ou à des facteurs Nod. Les gènes NCR sont activés en vagues successives au cours de l’organogenèse nodulaire et ce profil temporel est en corrélation avec une localisation spatiale spécifique de leurs transcrit de la zone apicale à la partie proximale de nodosités. En outre, nous avons montré que les NCRs ne sont pas induites pendant la sénescence des nodules. Ces analyses expérimentales ensemble avec des calculs d’entropie de Shannon, une métric pour la spécificité d’expression, montrent que les gènes NCR sont parmi les gènes les plus fortement et le plus spécifiquement exprimés chez M. truncatula. Ainsi, l'expression des NCRs est soumise à une régulation extrêmement stricte et ils sont activés exclusivement pendant l’organogenèse et au cours du développement nodulaire dans les cellules symbiotiques polyploïdes. Cette analyse a suggéré l'implication de la régulation épigénétique des gènes NCR. La formation des cellules symbiotiques s'exerce par une endoreplication et est associée à une reprogrammation transcriptionnelle. En utilisant le tri par cytométrie en flux des noyaux, en fonction de leur contenu en ADN, nous avons montré que les vagues transcriptionnelles sont en correlation avec les niveaux croissants de ploïdie et resultent des modifications épigénétiques durant les cycles d’endoréplication. Nous avons étudié la méthylation de l'ADN génomique et l'accessibilité à la chromatine, ainsi que la présence des marqueurs répresseurs (H3K27me3) ou activateurs transcriptionnels (H3K9ac) sur des gènes spécifiques des nodosités. La méthylation différentielle de l'ADN n'a été trouvée que dans un petit sous-ensemble de gènes symbiotiques spécifiques aux nodosités. Néanmoins, plus que la moitié des gènes NCR était différentiellement méthyles. D'autre part, l'expression des gènes était corrélée avec la décondensation de la chromatine (ouverture), un enrichissement du marqueur H3K9ac et une diminution du marqueur H3K27me3. Nos résultats suggèrent que l’endoréplication, pendant la différenciation cellulaire dans les nodosités, fasse partie des mécanismes qui lèvent l’inactivation transcriptionnelle des gènes spécifiques des nodosités, ceci résultant de modifications des codes épigénétiques au niveau de la chromatine. / Legume plants are able to interact with soil bacteria from the Rhizobiaceae family. This interaction leads to the development of a specialized organ called root nodule. Inside the symbiotic nodule cells, rhizobia are capable to fix atmospheric nitrogen and convert it to ammonia, which is a usable nitrogen source for the plant. In the legume Medicago truncatula the symbiotic cells produce high amounts of Nodule-Specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. The expression analysis of 334 NCR genes in 267 different experimental conditions using the Medicago truncatula Gene Expression Atlas (MtGEA) revealed that all the NCR genes except five are exclusively expressed in nodules. No NCR expression is induced in any other plant organ or in response to biotic, abiotic stress tested or to Nod factors. The NCR genes are activated in consecutive waves during nodule organogenesis, which correlated with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. Moreover, we showed that NCRs are not induced during nodule senescence. According to their Shannon entropy, a metric for tissue specificity, NCR genes are among the most specifically and highest expressed genes in M. truncatula. Thus, NCR gene expression is subject to an extreme tight regulation since they are only activated during nodule organogenesis in the polyploid symbiotic cells. This analysis suggested the involvement of epigenetic regulation of the NCR genes. The formation of the symbiotic cells is driven by endoreduplication and is associated with transcriptional reprogramming. Using sorted nodule nuclei according to their DNA content, we demonstrated that the transcriptional waves correlate with growing ploidy levels and investigated how the epigenome changes during endoreduplication cycles. We studied genome-wide DNA methylation and chromatin accessibility as well as the presence of repressive H3K27me3 and activating H3K9ac histone tail modifications on selected genes. Differential DNA methylation was found only in a small subset of symbiotic nodule-specific genes, including over half of the NCR genes, while in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes’ active or repressed state. On the other hand, expression of these genes correlated with ploidy-dependent opening of the chromatin and in a subset of tested genes with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in differentiation of symbiotic cells.
|
32 |
Map-based Cloning of an Anthracnose Resistance Gene in <i>Medicago truncatula</i>Yang, Shengming 01 January 2008 (has links)
Anthracnose, caused by the fungal pathogen Colletotrichum trifolii, is one of the most destructive diseases of alfalfa worldwide. Cloning and characterization of the host resistance (R) genes against the pathogen will improve our knowledge of molecular mechanisms underlying host resistance and facilitate the development of resistant alfalfa cultivars. However, the intractable genetic system of cultivated alfalfa, owing to its tetrasomic inheritance and outcrossing nature, limits the ability to carry out genetic analysis in alfalfa. Nonetheless, the model legume Medicago truncatula, a close relative of alfalfa, provides a surrogate for cloning the counterparts of many agronomically important genes in alfalfa. In this study, we used genetic map-based approach to clone RCT1, a host resistance gene against C. trifolii race 1, in M. truncatula. The RCT1 locus was delimited within a physical interval spanning ~200 kilo-bases located on the top of M. truncatula linkage group 4. Complementation tests of three candidate genes on the susceptible alfalfa clones revealed that RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad spectrum anthracnose resistance. Thus, RCT1 offers a novel resource to develop anthracnose-resistant alfalfa cultivars. Furthermore, the cloning of RCT1 also makes a significant contribution to our understanding of host resistance against the fungal genus Colletotrichum.
|
33 |
Map-based cloning of the NIP gene in model legume Medicago truncatula.Morris, Viktoriya 05 1900 (has links)
Large amounts of industrial fertilizers are used to maximize crop yields. Unfortunately, they are not completely consumed by plants; consequently, this leads to soil pollution and negative effects on aquatic systems. An alternative to industrial fertilizers can be found in legume plants that provide a nitrogen source that is not harmful for the environment. Legume plants, through their symbiosis with soil bacteria called rhizobia, are able to reduce atmospheric nitrogen into ammonia, a biological nitrogen source. Establishment of the symbiosis requires communication on the molecular level between the two symbionts, which leads to changes on the cellular level and ultimately results in nitrogen-fixing nodule development. Inside the nodules hypoxic environment, the bacterial enzyme nitrogenase reduces atmospheric nitrogen to ammonia. Medicago truncatula is the model legume plant that is used to study symbiosis with mycorrhiza and with the bacteria Sinorhizobium meliloti. The focus of this work is the M. truncatula nodulation mutant nip (numerous infections and polyphenolics). The NIP gene plays a role in the formation and differentiation of nodules, and development of lateral roots. Studying this mutant will contribute knowledge to understanding the plant response to infection and how the invasion by rhizobia is regulated. Previous genetic mapping placed NIP at the top of linkage group 1 of the M. truncatula genome. A NIP mapping population was established with the purpose of performing fine mapping in the region containing NIP. DNA from two M. truncatula ecotypes A17 and A20 can be distinguished through polymorphisms. Positional mapping of the NIP gene is based on the A17/A20 genetic map of M. truncatula. The NIP mapping population of 2277 plants was scored for their nodulation phenotype and genotyped with flanking molecular genetic markers 146o17 and 23c16d, which are located ~1.5 cM apart and on either side of NIP. This resulted in the identification of 170 recombinant plants, These plants' DNAs were tested further with different available genetic markers located in the region of interest, to narrow the genetic interval that contains the NIP gene. Segregation data from genotyping analysis of recombinant plants placed NIP in the region between 4L4 and 807 genetic markers.
|
34 |
The metabolism of nitrogen assimilation in Medicago truncatula : a quest for sensors and regulatorsLeitão, José Nuno de Araújo January 2012 (has links)
Trabalho de investigação desenvolvido no Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, na Faculdade de Engenharia da Universidade do Porto e no Instituto de Biologia Molecular e Celular da Universidade do Porto / Tese de mestrado integrado. Bioengenharia - Ramo de Biotecnologia Molecular. Faculdade de Engenharia. Universidade do Porto. 2012
|
35 |
Análisis del traductoma en etapas tempranas de la simbiosis fijadora de nitrógeno entre Medicago truncatula y Sinorhizobium melilotiReynoso, Mauricio 28 August 2013 (has links)
La capacidad de las leguminosas de establecer una asociación simbiotica con bacterias de suelo es de fundamental importancia para la incorporación de nitrógeno a los ecosistemas, particularmente en sistemas agronómicos. En el presente trabajo de tesis se estudió la dinámica de la asociación de transcriptos (mRNAs) y miRNAs a complejos traduccionales durante las etapas tempranas de la simbiosis. Para ello, inicialmente, se puso a punto de la técnica de purificación por afinidad de ribosomas y polisomas (TRAP) en Medicago truncatula. Se cuantificó la variación de los niveles de asociación a polisomas de quince mRNAs en respuesta a la inoculación con su simbionte Sinorhizobium meliloti. Se identificó un grupo de genes, cuyos mRNAs no varían significativamente a nivel de abundancia celular, pero que se regulan positivamente a nivel de su asociación a polisomas en respuesta al rizobio. Este grupo incluyó genes que codifican receptores de tipo quinasas requeridos para la infección bacteriana o la organogénesis del nódulo y factores de transcripción de la familia GRAS y NF-Y. Posteriormente, se evaluaron los niveles de asociación a polisomas de los mRNAs seleccionados en los tejidos específicos de la raíz involucrados en la formación de nódulos: epidermis, córtex y floema. Este análisis permitió identificar mRNAs que se asocian diferencialmente a polisomas en los distintos tipos celulares durante las etapas tempranas de la simbiosis. Por otro lado, se evaluó la presencia de pequeños RNAs (sRNAs) en los complejos traduccionales purificados mediante TRAP. Los sRNAs seleccionados, incluyendo miRNAs de 21 y 22 nts y tasiRNAs, se encontraron asociados a complejos traduccionales. En particular, los niveles de miR169 presentes en polisomas disminuyeron significativamente en respuesta a la inoculación. Esta dismunución se vió acompañada de un incremento en la asociación a polisomas de su gen blanco, NF-YA1, y de los niveles de la proteína en las raíces inoculadas. Estos resultados indican que tanto los mRNAs como los miRNAs estarían sometidos a un reclutamiento diferencial a polisomas y expone la importancia de la traducción selectiva durante la simbiosis. La extensión de la técnica TRAP a M. truncatula abre la posibilidad de profundizar este nivel de regulación tanto a nivel de raíz completa como de tipos celulares específicos en asociaciones simbióticas como la nodulación y la micorrización arbuscular. El presente trabajo de tesis contribuye a sustentar la relevancia de los niveles de regulación post-transcripcional en los cambios de la expresión génica que ocurren durante el establecimiento de una asociación simbiótica de importancia ecológica y agronómica.
|
36 |
Why are the symbioses between some genotypes of Sinorhizobium and Medicago suboptimal for N2 fixation?J.Terpolilli@murdoch.edu.au, Jason Terpolilli January 2009 (has links)
The conversion of atmospheric dinitrogen (N2) into plant available nitrogen (N), by legumes and their prokaryotic microsymbionts, is an integral component of sustainable farming. A key constraint to increasing the amount of N2 fixed in agricultural systems is the prevalence of symbioses which fix little or no N. The biotic factors leading to this suboptimal N2 fixation have not been extensively analysed. Using the widely studied and cultivated perennial legume Medicago sativa and the model indeterminate annual legume Medicago truncatula with the sequenced bacterial microsymbiont Sinorhizobium meliloti 1021 (Sm1021) as a basis, the work presented in this thesis examined the effectiveness of N2 fixation in these associations and in other comparable systems and investigated factors which lead to the establishment of suboptimally effective symbioses.
The ability of Sm1021, S. medicae WSM419 and the uncharacterised Sinorhizobium sp. WSM1022 to fix N with M. truncatula A17, M. sativa cv. Sceptre and a range of other Medicago spp. was evaluated in N-limited conditions. As measured by plant shoot dry weights and N-content, Sm1021 was partially effective with M. truncatula A17 whereas WSM1022 and WSM419 were both effective with this host in comparison to nitrogen-fed (N-fed) control plants. In contrast, Sm1021 and WSM1022 were effective with M. sativa while WSM419 was only partially effective. Nodules induced by Sm1021 on M. truncatula A17 were more numerous, paler, smaller in size and more widely distributed over the entire root system than in the two effective symbioses with this host. On the contrary, nodule number, size and distribution did not differ between these three strains on M. sativa. WSM1022 was effective on M. littoralis, M. tornata and two other cultivars of M. truncatula (Jemalong and Caliph) but Sm1021 was only partially effective on these hosts. These data indicate that the model indeterminate legume symbiosis between M. truncatula and Sm1021 is not optimally matched for N2 fixation and that Sm1021 possesses broader symbiotic deficiencies. In addition, the interaction of WSM1022 with M. polymorpha (small white nodules but does not fix N), M. murex (does not nodulate), M. arabica (partially effective N2 fixation) and M. sphaeorcarpus (partially effective N2 fixation), and the sequence of the 16S rDNA, are all consistent with this isolate belonging to the species S. meliloti.
The colony morphology of TY, half-LA and YMA agar plate cultures of Sm1021, WSM419 and WSM1022 suggested differences in EPS profiles between these strains. Sm1021 is very dry, compared to the mucoid WSM419 and extremely mucoid WSM1022. Sm1021 is known to carry an insertion in expR rendering the gene non-functional and resulting in the dry colony phenotype. WSM419 has an intact copy of expR, while the expR status of WSM1022 is not known. Rm8530, a spontaneous mucoid derivative of Sm1021 with an intact expR, was significantly less effective with M. truncatula than Sm1021, but there was no difference in effectiveness between these strains on M. sativa. The effectiveness of Sm1021, when complemented with a plasmid-borne copy of expR from Rm8530, was significantly reduced on M. truncatula but not M. sativa, implicating a functional expR as being the cause of reduced N2 fixation observed with Rm8530 on M. truncatula. ExpR could reduce the effectiveness of Rm8530 by acting as a negative regulator of genes essential for symbiosis with M. truncatula, or by altering the quantity or structure of succinoglycan and/or galactoglucan produced. These data support the emerging view of ExpR being a central regulator of numerous cellular processes.
The timing of nodulation between Sm1021 and WSM419 on M. truncatula and M. sativa was investigated. Compared to the other symbioses analysed, the appearance of nodule initials and nodules was delayed when M. truncatula was inoculated with Sm1021 by 3 and 4 days, respectively. To explore whether events during early symbiotic signalling exchange could account for these observed delays, leading to the establishment of a suboptimal N2-fixing symbiosis, a novel system was developed to compare the response of the Sm1021 transcriptome to roots and root exudates of M. truncatula A17 and M. sativa cv. Sceptre. This system consisted of a sealed 1 L polycarbonate chamber containing a stainless steel tripod with a wire mesh platform on which surface-sterilised seeds could be placed and allowed to germinate through the mesh, into a hydroponic medium below. After germination, Sm1021 cells were inoculated into the hydroponic solution, exposed to the roots and root exudates for 16 h, harvested and their RNA extracted. Comparison of Sm1021 mRNA from systems exposed to M. truncatula or M. sativa revealed marked differences in gene expression between the two. Compared to the no plant control, when M. sativa was the host plant, 23 up-regulated and 40 down-regulated Sm1021 genes were detected, while 28 up-regulated and 45 down-regulated genes were detected with M. truncatula as the host. Of these, 12 were up-regulated and 28 were down-regulated independent of whether M. truncatula or M. sativa was the host. Genes expressed differently when exposed to either M. truncatula or M. sativa included nex18, exoK, rpoE1 and a number of other genes coding for either hypothetical proteins or proteins with putative functions including electron transporters and ABC transporters. Characterisation of these differentially expressed genes along with a better understanding of the composition of M. truncatula root exudates would yield a clearer insight into the contribution of early signal exchange to N2 fixation.
Comparison of the regulation of nodule number between Sm1021 and WSM419 on M. truncatula and M. sativa revealed nodule initials at 42 days post-inoculation (dpi) on M. truncatula inoculated with Sm1021. In contrast, no new nodule initials were present 21 dpi on any of the other interactions examined. Moreover, analysis of nodule sections revealed that the number of infected cells in M. truncatula-Sm1021 nodules was less than for comparable symbioses. These data suggest that nodule number is not tightly controlled in the M. truncatula-Sm1021 association, probably due to N2 fixation being insufficient to trigger the down regulation of nodulation. Quantification of N2 fixation activity in this and other more effective symbioses is required. The poor effectiveness of the M. truncatula-Sm1021 symbiosis makes these organisms unsuitable as the model indeterminate interaction and the implications for legume research are discussed. The recently sequenced WSM419 strain, revealed here to fix N2 more effectively with M. truncatula than Sm1021, may be a better model microsymbiont, although WSM419 is only partially effective for N2 fixation with M. sativa. The sequencing of S. meliloti WSM1022, a highly effective strain with both M. truncatula and M. sativa, would provide a valuable resource in indentifying factors which preclude the establishment of effective symbioses.
|
37 |
Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP GeneLee, Yi-Ching 12 1900 (has links)
The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in this genetic internal. BACs near the potential NIP gene location near marker 164N9 were identified, and used in experiments to predict the physical map by a BAC-by-BAC strategy. Using marker 164N9 as a center point, and chromosome walking outward, the physical map toward markers 146O17 and 23C16D was built. The chromosome walk consisted of a virtual walk, made with existing sequence of BACs from the Medicago genome project, hybridizations to filters containing BAC DNA, and PCR reactions to confirm that predicted overlapping BACs contained DNA that yielded similar PCR products. In addition, the primers which are made for physical mapping via PCR could be good genetic markers helpful in discovering the location of the NIP gene. As a result of efforts repotted here, gap in physical map between marker 164N9 and 146O17 was closed.
|
38 |
Characterization of Infection Arrest Mutants of Medicago Truncatula and Genetic Mapping of Their Respective Genes.Veereshlingam, Harita 05 1900 (has links)
In response to compatible rhizobia, leguminous plants develop unique plant organs, root nodules, in which rhizobia fix nitrogen into ammonia. During nodule invasion, the rhizobia gain access to newly divided cells, the nodule primordia, in the root inner cortex through plant-derived cellulose tubes called infection threads. Infection threads begin in curled root hairs and bring rhizobia into the root crossing several cell layers in the process. Ultimately the rhizobia are deposited within nodule primordium cells through a process resembling endocytosis. Plant host mechanisms underlying the formation and regulation of the invasion process are not understood. To identify and clone plant genes required for nodule invasion, recent efforts have focused on Medicago truncatula. In a collaborative effort the nodulation defect in the lin (lumpy infections) mutant was characterized. From an EMS-mutagenized population of M. truncatula, two non-allelic mutants nip (numerous infections with polyphenolics) and sli (sluggish infections) were identified with defects in nodule invasion. Infection threads were found to proliferate abnormally in the nip mutant nodules with only very rare deposition of rhizobia within plant host cells. nip nodules were found to accumulate polyphenolic compounds, indicative of a host defense response. Interestingly, nip was also found to have defective lateral root elongation suggesting that NIP has a role in both nodule and lateral root development. NIP was found to map at the upper arm of chromosome 1. In sli, infection threads were observed to bring rhizobia from infection threads to newly divided nodule primordium cells in the roots inner cortex. Polyphenolic accumulation in sli nodule/bumps was found. Lateral roots in sli were found to be clustered at the top of the root, indicating that sli like nip may be defective in lateral root development.
|
39 |
Plusieurs niveaux de contrôle sont mis en jeu lors de flétrissement bactérien chez la légumineuse modèle Medicago truncatula / Several control levels during the bacterial wilt of the model legume plant Medicago truncatulaTurner, Marie 25 September 2009 (has links)
Nous présentons l’étude de l’interaction entre la bactérie pathogène racinaire Ralstonia solanacearum et la légumineuse modèle Medicago truncatula. Un pathosystème avec les lignées A17 et F83005.5, respectivement sensible et résistante à la souche GMI1000, a été mis en place avec une procédure d’inoculation sur racines intactes. Ce dispositif expérimental nous a permis de suivre le processus infectieux, de la pénétration de la bactérie par l’extrémité racinaire au développement des symptômes foliaires. L’analyse des étapes précoces de l’interaction a permis de décrire l’apparition de symptômes racinaires qui se mettent en place rapidement après l’infection, que les lignées soient résistantes ou sensibles à la bactérie. Un arrêt de croissance de la racine s'observe dès 24 heures post-inoculation, ainsi qu’une mortalité de l’épiderme de l’extrémité racinaire. Ces phénotypes sont notés suite à des inoculations avec de faibles concentrations bactériennes, et ce sur plusieurs espèces hôtes ou non-hôtes testées. La mise en place des symptômes racinaires est dépendante de l’appareil de sécrétion de type III. Un crible de mutants d’effecteurs de type III de la souche GMI1000, basé sur l’apparition des symptômes racinaires, a permis de montrer que des pools différents d’effecteurs interviennent chez A17 et F83005.5. Chez la lignée sensible A17, deux effecteurs sont principalement impliqués, Gala7 et AvrA. L’étude de la colonisation de cette lignée a montré que le mutant gala7 ne pénètre pas la plante et n’induit pas de symptômes de flétrissement. Le mutant avrA s’est révélé capable d’induire la maladie chez la lignée A17 mais de manière nettement réduite par rapport à la souche sauvage. L’analyse des extrémités racinaires des lignées sensible et résistante infectées par la souche GMI1000 a révélé qu’au niveau des parois de l’endoderme, la présence de lignine est induite de manière plus précoce chez la lignée résistante. Des phénomènes de division cellulaire ont été identifiés autour du cylindre central et semblent également liés à une restriction de la propagation bactérienne. Au niveau du contenu cellulaire, une autofluorescence et une production de ROS semblent liés à une phase nécrotrophe de la bactérie lors de sa propagation dans la zone corticale de l’extrémité racinaire. L’étude de la colonisation bactérienne en s’affranchissant de l’étape de pénétration a révélé que des mécanismes de résistances peuvent intervenir au niveau de collet chez la lignée F83005.5 et lors de la colonisation racinaire des vaisseaux conducteurs suite à une inoculation avec le mutant gala7 / Manquant
|
40 |
Genetic Analysis of Medicago truncatula Plants with a Defective MtIRE GeneAlexis, Naudin 08 1900 (has links)
Leguminous plants are able to fix nitrogen by establishing a symbiotic relationship with soil dwelling bacteria, called rhizobia. The model plant Medicago truncatula forms a partnership with Sinorhizobium meliloti whereby the plant gains bioavailable nitrogen and in exchange the bacteria gains carbohydrates. This process occurs within nodules, which are structures produced on the roots of the plants within which nitrogen is fixed. M. truncatula incomplete root elongation (MtIRE) was localized to the infection zone, which is zone II of indeterminate nodules. It was shown to encode a signaling kinase so it was anticipated to play a role in nodulation. Mutants of MtIRE in the R108 background, mutagenized with the Tnt1 retrotransposon, were obtained from reverse screen, and were assessed to determine if a disrupted MtIRE gene was the cause of nitrogen fixation defective nodules. Mutant line NF1320, having a mutant phenotype, showed typical Mendelian segregation of 3:1 when backcrossed to R108. Experimental results show that MtIRE gene is not the cause of the mutant phenotype, but was linked to the causative locus. MtIRE co-segregated with the mutant phenotype 83%. Southern blot and the first version of the M. truncatula genome (version 3.5) reported a single MtIRE gene and this was shown to be on chromosome 5 but the latest version of the M. truncatula genome (version 4.0) showed a second copy of the gene on chromosome 4. The genome sequence is based on the A17 reference genome. Both genes are 99% identical. Genetic markers that originate from flanking sequence tags (FSTs) on both chromosome 4 and 5 were tested in an attempt to find an FST that co-segregated with the mutant phenotype 100%. An FST derived from a Tnt1 insertion in Medtr4g060930 (24F) co-segregated with the mutant phenotype closely, with 76% co-segregation. Medtr4g060930 (24F) is on chromosome 4, making it likely that the Tnt1 inserted in the MtIRE gene is also on chromosome 4, and thus the defective gene is on chromosome 4.
|
Page generated in 0.0787 seconds