Spelling suggestions: "subject:"medica truncated"" "subject:"medica truncation""
71 |
Arbuscular mycorrhiza in Medicago truncatulaZhang, Haoqiang 21 March 2014 (has links)
Die arbuskuläre Mykorrhiza (AM) ist eine mutualistische Symbiose, die die Phosphataufnahme und Pathogenresistenz von Pflanzen verbessern kann. In der vorliegenden Doktorarbeit wurde die Rolle der Protonen-pumpenden ATPase MtHA1 für die AM Symbiose in Medicago truncatula untersucht. In MtHA1 Mutanten konnten AM Pilze nur noch verkürzte Arbuskel ohne typische Verzweigungen ausbilden. Dies zeigte sich auch in Expressionsmustern von Genen, die für Proteine in verschiedenen Bereichen der periarbuskulären Membran kodieren. Außerdem waren AM Pilzbesiedelung, die verbesserte Nährstoffaufnahme und die Wachstumsförderung in MtHA1 mutierten Pflanzen reduziert. Die Mykorrhiza-induzierte Resistenz (MIR) wurde näher in M. truncatula Pflanzen untersucht, die von Aphanomyces euteiches infiziert waren, dem Erreger einer Wurzelfäule in Leguminosen. In einem geteilten Wurzelsystem, das eine hohe Expression von Verteidigungsgenen aufwies, unterdrückte ein AM Pilz diese Expression und erhöhte in Folge die Empfindlichkeit für das Pathogen. In Wurzeln von Topfkulturen dagegen konnte eine typische MIR beobachtet werden, die wahrscheinlich auf erhöhter Aktivität der Jasmonat/Ethylen-regulierten Verteidigungsantwort beruht, verursacht durch eine Unterdrückung der Salizylsäuresynthese. Im Ergebnis zeigt diese Arbeit die bedeutende Rolle des Gens MtHA1 für die Bildung und Funktion der arbuskelhaltigen Zellen. Die Mutation des Gens führt zur verminderten Arbuskelverzweigung, reduzierter Phosphataufnahme und Wachstumsförderung in der Mykorrhiza und schließlich zu einer geringeren Gesamtbesiedelung durch den AM Pilz. Genexpressionsanalysen weisen darauf hin, dass unterschiedliche Mechanismen den lokalen und systemischen Wechselwirkungen zwischen AM Pilzen und Pathogenen in der Wurzel zu Grunde liegen. Verschieden physiologische Zustände von geteilten Wurzelsystemen und Wurzeln in Topfkulturen erschweren allerdings einen direkten Vergleich der beiden experimentellen Ansätze. / Arbuscular mycorrhiza (AM) is a wide spread mutualistic symbiosis, which can improve phosphate acquisition and pathogen resistance of plants. In the current Ph.D. thesis the role of a proton pumping ATPase (MtHA1) for the AM symbiosis in Medicago truncatula was investigated. In MtHA1 mutant plants, different AM fungi only developed truncated arbuscules without forming typical hyphal branches, and this phenotype was mirrored by expression patterns of genes for proteins located in different areas of the periarbuscular membrane. AM fungal colonization, improved phosphate uptake and plant growth promotion were reduced in MtHA1 mutant plants. Mycorrhiza-induced resistance (MIR) and the nodule symbiosis were, however, not affected. MIR was further analyzed in the M. truncatula infected with Aphanomyces euteiches which causes a root-rot disease in legumes. In a split root system showing high levels of defense-gene expression, colonization of an AM fungus reduced this expression and in consequence increased susceptibility of the roots for the pathogen. In roots of pot cultures, however, a typical MIR was observed and could be based on the higher activity of jasmonate/ethylene-regulated defense responses due to suppression of salicylic acid biosynthesis. In conclusion, this work shows that the gene MtHA1 encoding a proton pumping-ATPase plays a critical role in the formation and function of arbuscule-containing cells. Expression of the mutated gene results in reduced formation of arbuscule branches. This in turn negatively influences mycorrhizal phosphate uptake, plant growth promotion and overall mycorrhizal colonization of the roots. Gene expression analyses indicate that different mechanisms underlay local and systemic interactions between the mycorrhizal fungus and the root pathogen. The different physiological stages of pot culture and split root system make a comparison of the two experimental approaches, however, difficult.
|
72 |
Etude de l'interaction plante-communautés microbiennes de la rhizosphère chez l'espèce modèle Medicago truncatula par une approche multidisciplinaire : contribution à la réflexion sur le pilotage des interactions par la plante / Study of the interactions between plants and their associated rhizosphere microbial communities for the modele legume Medicago truncatula using a multidisciplinary approach : contribution to the reflexion on the leading of interactions by the plantZancarini, Anouk 25 June 2012 (has links)
Les communautés microbiennes du sol peuvent améliorer la croissance de la plante en augmentant la disponibilité en nutriments du sol, favorisant ainsi leur prélèvement par la plante. Dans le contexte d’une production agricole à bas niveau d’intrants, la nutrition de la plante est susceptible de reposer de plus en plus sur les interactions plante-communautés microbiennes de la rhizosphère, qui peuvent être modulées par le génotype de la plante. Pourtant, très peu d’études se sont intéressées aux modifications des communautés microbiennes de la rhizosphère dans leur globalité et ce en relation avec à la fois le génotype et le phénotype de la plante. Ces travaux de thèse ont été consacrés à étudier l’effet du génotype de la plante sur la structure génétique des communautés microbiennes de la rhizosphère en relation avec les stratégies nutritionnelles de la plante.L’interaction plante-communautés microbiennes de la rhizosphère a été évaluée par une approche multidisciplinaire alliant écophysiologie et écologie microbienne. L’effet du génotype de la plante sur la structure génétique des communautés microbiennes de la rhizosphère qui lui sont associées a été analysé par DNA fingerprint. Les différentes stratégies nutritionnelles de la plante ont été analysées par une approche de type structure/fonction prenant en compte la mise en place des structures (feuilles, racines) et leur fonctionnement (photosynthèse, rhizodéposition, prélèvement spécifique d’azote).Dans une première expérimentation réalisée sur sept génotypes de Medicago truncatula, nous avons montré qu’à un stade précoce du développement de la plante, le génotype de Medicago truncatula affectait la structure génétique des communautés bactériennes du sol. En revanche, à ce stade précoce, peu de différences de croissance ont été observées entre les différents génotypes étudiés. Ces derniers ont par contre présenté des stratégies nutritionnelles contrastées. Les descripteurs fonctionnels sont donc plus efficaces que les descripteurs structurels pour discriminer les génotypes de plantes à un stade précoce du développement de la plante. De plus, nous avons montré un lien entre les stratégies nutritionnelles de la plante et la sélection des communautés bactériennes associées. Cette étude nous a également permis de développer un cadre d’analyse écophysiologique appliqué à l’étude des interactions plante-communautés microbiennes de la rhizosphère.Outre l’effet majeur du génotype de la plante dans les interactions plante-communautés bactériennes de la rhizosphère, nous avons également montré qu’il y avait un effet important de l’environnement, comme la disponibilité en azote minéral du sol. En effet, la disponibilité en azote minéral du sol a affecté la structure génétique des communautés bactériennes rhizosphériques via un effet indirect de la plante dépendant du génotype considéré. Les effets des différents génotypes de Medicago truncatula et de leurs stratégies de réponses à des contraintes environnementales, comme la disponibilité de l’azote du sol, se sont révélées être des composantes majeures de la sélection des communautés microbiennes. [...] / The soil microbial communities can improve plant growth by increasing soil nutrient availability, thereby promoting their uptake by the plant. In an overall context of input reduction, the plant nutrition should be increasingly based on plant- rhizosphere microbial communities’ interactions. Yet, very few studies have examined the entire rhizosphere microbial communities in relationship with both plant genotype and phenotype. The aim of this thesis was to study the plant genotype effect on the rhizosphere microbial communities in relationship with the plant nutritional strategies.To do so, the plant-rhizosphere microbial communities’ interaction was assessed by a multidisciplinary approach combining ecophysiology and microbial ecology. The plant genotype effect on the genetic structure of the associated rhizosphere microbial communities was analyzed by DNA fingerprinting. The different plant nutritional strategies were analyzed by a structural/functional approach taking into account both structure establishment e.g. leaves and functions e.g. photosynthesis.In a first experiment carried out on seven genotypes of Medicago truncatula, we showed that the Medicago truncatula genotype affected the genetic structure of the rhizosphere bacterial communities very early relatively to the plant development stages. However, at this early stage, few growth differences could be observed among the different genotypes. Yet, those genotypes presented contrasted nutritional strategies. Therefore, the functional descriptors were more efficient than the structural ones to discriminate plant genotypes at an early developmental stage. In addition, we showed that a link existed between the plant nutritional strategies and the rhizosphere bacterial communities selection. Finally, this study enabled to develop a multidisciplinary framework applied to the study of the plant- rhizosphere microbial communities’ interactions.In addition to the plant genotype effect, we showed that there is an environmental effect e.g. soil mineral nitrogen availability on the rhizosphere bacterial communities. Indeed, the soil mineral nitrogen availability affected the genetic structure of the rhizosphere bacterial communities via an indirect effect of the plant depending on its genotype. The effects of the different Medicago truncatula genotypes and their response strategies to environmental constraints (soil mineral nitrogen availability), proved to be a major component of the selection of the rhizosphere microbial communities.In order to identify the genetic determinisms of the interaction between the plant and the rhizosphere microbial communities, a second experiment was conducted on a core collection of 184 genotypes of Medicago truncatula. Initial results enabled to identify and characterize four groups of genotypes with contrasted phenotypes for their growth and their specific nitrogen uptake. Thanks to high-throughput sequencing, we will analyze the rhizosphere microbial communities’ diversity associated with the different Medicago truncatula genotypes. These results should determine if the plant genotype influences the selection of beneficial rhizosphere microbial communities. Moreover, when the whole genome sequencing data would be available for the 184 genotypes of the Medicago truncatula core collection, a genome-wide association study will be proceed. The creation of plant ideotypes, which will promote beneficial interactions with rhizosphere microbial communities, will be possible. Plant growth and yield will be improved without the concomitant increase of agricultural inputs.
|
73 |
The Medicago truncatula sucrose transporter family : sugar transport from plant source leaves towards the arbuscular mycorrhizal fungusDoidy, Joan 23 May 2012 (has links) (PDF)
In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide (MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal interactions in arbuscular mycorrhiza (AM), have not yet been investigated.With the recent completion of the M. truncatula genome sequencing as well as the release of transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades: MtSUT1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and MtSUT4-1 are H+/sucrose symporters and represent key members of the MtSUT family. Conservation of transport capacity between orthologous leguminous proteins, expression profiles and subcellular localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for remobilization of intracellular reserve.The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous SUTs in response to colonization by glomeromycotan fungi.In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices expression library suitable for yeast functional complementation and screening of symbiotic marker genes, similar to the approach that led to the identification of the first glomeromycotan hexose transporter (GpMST1), has been developed in this study. [...]
|
74 |
Recherche de déterminants génétiques de la date de floraison chez la Légumineuse modèle, Medicago truncatulaPierre, Jean-Baptiste 28 January 2008 (has links) (PDF)
La morphogenèse aérienne inclut des caractères de croissance, de développement et de phénologie, et conditionne fortement la valeur d'usage des Légumineuses. Parmi ces caractères, la floraison est un événement majeur du cycle de vie car elle est déterminante pour le succès reproductif. Elle correspond à la transition généralement non réversible d'un méristème végétatif produisant des feuilles et tiges, en un méristème floral. La régulation de ce phénomène morphogénétique est le fait d'un réseau complexe de signalisations. Les légumineuses cultivées ont souvent des génomes complexes. C'est le cas de la luzerne (Medicago sativa), espèce fourragère pérenne, tétraploïde et allogame ainsi que du pois (P. sativum) qui présente un génome de grande taille. Des études précises peuvent être menées sur la légumineuse modèle Medicago truncatula, espèce diploïde, annuelle, à cycle court et autogame. De nombreuses ressources génétiques et génomiques sont disponibles chez cette espèce qui possède un fort degré de synténie avec la luzerne et le pois. De plus des gènes intervenant dans le déterminisme de la date de floraison ont été décrits chez A. thaliana et chez le pois. L'objectif de la thèse est d'identifier des zones du génome et des gènes en utilisant les connaissances et outils développés chez M. truncatula, A. thaliana et P. sativum dans le déterminisme génétique de la date de floraison chez M. truncatula. Après une analyse de l'effet de la photopériode sur la date de floraison d'une gamme de lignées, une approche " gènes candidats positionnels " a été mise en oeuvre. La méthodologie employée consiste à montrer la variabilité génétique de la date de floraison en réponse à la photopériode, rechercher des QTL (Quantitative Trait Locus) de date de floraison dans trois populations connectées de lignées recombinantes, réaliser une méta-analyse QTL afin de détecter les régions conservées dans le contrôle du caractère entre populations, cartographier finement un QTL majeur et repérer les gènes candidats présents dans son intervalle de confiance. L'expression de ces gènes a été comparée pour deux lignées afin d'associer au caractère les gènes différentiellement exprimés. En chambre de culture, la date de floraison de huit lignées a été mesurée sous deux traitements : 12 heures et 18 heures d'éclairement. Les données montrent qu'il existe de la variabilité génétique pour la date de floraison entre ces huit lignées, que la floraison est plus précoce en jours longs qu'en jours courts et qu'il existe une interaction lignée x photopériode. Un QTL majeur de date de floraison a pu être repéré sur le groupe de liaison 7 dans les trois populations de lignées recombinantes expliquant de 10 à 60 % de la variabilité observée. En méta-analyse sur les trois populations, un QTL consensus a été mis en évidence ayant un intervalle de confiance de seulement 0.9 cM. La cartographie fine de ce QTL a été réalisée sur la descendance (1663 plantes) d'une plante F6 hétérozygote au QTL détecté dans la population LR4. L'intervalle du QTL ainsi détecté couvre 2.4 cM. Six gènes homologues de gènes de floraison décrits chez A. thaliana ont été identifiés dans l'intervalle de ce QTL établi par cartographie fine. Leur séquençage pleine longueur a révélé du polymorphisme entre les deux parents : pour MtCO, homologue de CONSTANS et pour MtFTLc, homologue de FT. Par contre, aucun polymorphisme n'a été détecté pour deux autres homologues de FT (MtFTLa et MtFTLb) ni pour PKS. Une analyse de l'expression différentielle par RT-PCR semi quantitative des six gènes candidats a été réalisée chez deux lignées parentales contrastées pour leur date de floraison. Seul le gène MtCO est différentiellement exprimé entre ces deux lignées ; ce gène est donc actuellement le principal candidat pour expliquer la variation du caractère révélée à ce QTL sur le chromosome7, dans ces populations.
|
75 |
Effect of Phosphorus Starvation on Metabolism and Spatial Distribution of Phosphatidylcholine in Medicago truncatula Wild-Type and PDIL3 GenotypesDokwal, Dhiraj 08 1900 (has links)
Symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. Within nodule cells, N-fixing rhizobia are surrounded by plant-derived symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. First, I investigated the impact of P deprivation on wild-type Medicago truncatula plants. My observations that plants had impaired SNF activity, reduced growth, and accumulated less phosphate in P-deficient tissues (leaves, roots and nodules) is consistent with those of similar previous studies. Galactolipids decreased with increase in phospholipids in all P-starved organs. Matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MSI) of phosphatidylcholine (PC) species in nodules showed that under low P environments distributions of some PC species changed, indicating that membrane lipid remodeling during P stress is not uniform across the nodule. Secondly, a metabolomics study was carried out to test the alterations in the metabolic profile of the nodules in P-stress. GC-MS based untargeted metabolomics showed increased levels of amino acids and sugars and decline in amounts of organic acids in P deprived nodules. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in whole plant. My findings showed strong drop in levels of organic acids and phosphorylated compounds in P deprived leaves with moderate reduction in P deprived roots and nodules. Moreover, sugars and amino acids were elevated in whole plant under P deprivation.
Finally, the last project of my thesis involved studying the response of PDIL3 (Phosphate Deficiency-Induced LncRNA-3) a long non-coding RNA (lncRNA) mutant under severe P stress. PDIL3 is known to regulate Pi-deficiency signaling and transport in M. truncatula (Wang et al., 2017). My results confirmed that in P starvation, pdil3 plants showed better shoot growth, accumulated more phosphate in shoots, had impaired SNF and less rhizobial occupancy in nodules than WT. Subsequently, MALDI–MS imaging was used to spatially map and compare the distribution of phosphatidylcholine (PC) species in nodules of pdil3 and WT in P-replete and P-depleted conditions. Several PC species showed changes in distributions in pdil3 nodules compared to WT in both P sufficient and P deprived conditions. These data suggest that PDIL3's role is not just suppression of the Pi transporter, but it may also influence P partitioning between shoots and nodulated roots, meriting further investigation.
|
76 |
Caractérisation structurale et perception par la plante hôte Medicago truncatula des chitosaccharides pariétaux d'Aphanomyces euteiches, parasite de légumineusesNars, Amaury 19 February 2013 (has links) (PDF)
Aphanomyces euteiches est un oomycète parasite racinaire des légumineuses causant des pertes de rendement récurrentes. La paroi d'A.euteiches contient 10% de N-acétylglucosamine (NAG) sous la forme de chitosaccharides non cristallins, associés aux glucanes pariétaux. Afin de pouvoir étudier leur activité biologique, un bioessai d'élicitation du système racinaire de la plante hôte Medicago truncatula a été mis au point en utilisant une préparation de fragments de chitine comme éliciteur témoin. La purification de fractions de parois hydrolysées, enrichies en NAG, a donné des fragments de glycanes composés de glucose et de NAG. Ces hétéropolymères présentent une structure nouvelle jamais décrite à ce jour. Le bioessai d'élicitation racinaire a révélé une activité biologique des fractions de paroi différente de celle des fragments de chitine chez M.truncatula. De façon intéressante, l'une des fractions induit des oscillations calciques nucléaires dans les cellules épidermiques de cultures de racines de M.truncatula, qui sont différentes de la réponse provoquée par des chitotétramères purs.
|
Page generated in 0.0702 seconds