• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 57
  • 51
  • 51
  • 26
  • 19
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • Tagged with
  • 729
  • 189
  • 160
  • 112
  • 109
  • 82
  • 70
  • 69
  • 67
  • 65
  • 63
  • 62
  • 60
  • 58
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Analysis of conjugate heat transfer in tube-in-block heat exchangers for some engineering applications

Gari, Abdullatif Abdulhadi 01 June 2006 (has links)
This project studied the effect of different parameters on the conjugate heat transfer in tube-in-block heat exchangers for various engineering applications. These included magnetic coolers (or heaters) associated with a magnetic refrigeration system, high heat flux coolers for electronic equipment, and hydronic snow melting system embedded in concrete slabs. The results of this research will help in designing the cooling/heating systems and select their appropriate geometrical dimensions and material for specific applications. Types of problems studied in this project are: steady state circular microchannels with heat source in the gadolinium substrate, transient heat transfer in circular microchannels with time varying heat source in a gadolinium substrate, transient heat transfer in composite trapezoidal microchannels of silicon and gadolinium with constant and time varying heat source, steady state heat transfer in microchannels using fluids suspended with nanoparticl es, and analysis of steady state and transient heat transfer in a hydronic snow melting system. For each of these problems a numerical simulation model was developed. The mass, momentum, and energy conservation equations were solved in the fluid region and energy conservation in the solid region of the heat exchanger to arrive at the velocity and temperature distributions. Detailed parametric study was carried out for each problem. Parameters were Reynolds number, heat source value, channel diameter or channel height, solid materials and working fluids. Results are presented in terms of solid-fluid interface temperature, heat flow rate, heat transfer coefficient, and Nusselt number along the length of the channel and with the progression of time. The results showed that an increase in Reynolds number decreases the interface temperature but increases the heat flow rate and Nusselt number. When the heat source varied with time, by applying and removing the magnetic field, the interface temperature, heat flow rate, and Nusselt number attained a periodic variation with time. The decrease in the diameter at constant Reynolds number decreases the interface temperature and increases the heat flow rate at the fluid-solid interface.
252

Selektives Laserstrahlschmelzen von Titanaluminiden und Stahl / Selective laser melting of titaniumaluminides and steel

Löber, Lukas 08 September 2015 (has links) (PDF)
Diese Arbeit beschäftigt sich mit den aktuell bestehenden Herausforderungen der Technologie der additiven Fertigung in Form des selektiven Laserstrahlschmelzen (SLM). Es soll sich mit den Aspekten des Leichtbaus beim SLM-Verfahren beschäftigt werden. Dies geschieht mit zwei theoretischen Lösungsansätzen zur Gewichtsreduzierung von Bauteilen: 1. der Einsatz von Werkstoffen geringerer Dichte oder von neuen hochfesten Werkstoffen; 2. neue Bauweisen durch neue Konstruktions- und Werkstoffaufbauprinzipien. Praktisch erfolgt der erste Ansatz durch die Entwicklung von Prozessparametern und deren Einfluss auf das Gefüge von - für das SLM-Verfahren - neuen Leichtbauwerkstoffen, den Titanaluminiden (TiAl). Aus der großen Spanne von verschiedenen TiAl-Legierungen wurden für diese Arbeit folgende Vertreter Ti38,87Al43,67Nb4,08Mo1,02B0,1 und Ti48Al48Cr2Nb2 aufgrund ihres guten Eigenschaftsspektrums und der unterschiedlichen Erstarrungsvoränge gewählt. Aufgrund der hohen Anzahl von Einflussgrößen sollen verschiedene Ansätze, wie statistische Versuchspläne oder Einzelbahncharakterisierungen, verfolgt werden, um eine effiziente und schnelle Parameteroptimierung zu erzielen. Der zweite Ansatz verfolgt die Herstellung verschiedener Gitterstrukturen aus 1.4404-Stahl (X2CrNiMo 17-12-2). Durch das Fertigen von Gittern mit verschiedenen relativen Dichten, was über eine Variation der Durchmesser der Streben erreicht wird, sowie das mechanische Testen dieser, ist es möglich, eine Datengrundlage für zukünftige Konstruktionen zu erstellen. / This work deals with the currently existing challenges of technology of additive manufacturing in the form of selective laser melting (SLM). The aspects of lightweight construction with the SLM process will be highlighted. This is done with two theoretical approaches to weight reduction of components: 1. the use of materials of lower density or new high-strength materials; 2. new construction methods through new design and material construction principles. In practice, the first approach is performed through the development of process parameters and their influence on the microstructure of - for the SLM-process – a new lightweight material, the titanium aluminide (TiAl). Among the large range of various TiAl alloys the following two representatives Ti38,87Al43,67Nb4,08Mo1,02B0,1 and Ti48Al48Cr2Nb2 were chosen because of their good property spectrum and their different solidification behavior. The second approach pursued the production of various lattice structures made of 1.4404 steel (X2CrNiMo 17-12-2). By fabricating lattices with different relative densities, which is achieved by varying the diameter of the struts, and the mechanical testing of those, it is possible to create a data base for future construction principles.
253

Cyanine Dyes Targeting G-quadruplex DNA: Significance in Sequence and Conformation Selectivity

Huynh, Hang T 16 December 2015 (has links)
Small molecules interacting with DNA is an emerging theme in scientific research due to its specificity and minimal side-effect. Moreover, a large amount of research has been done on finding compounds that can stabilize G-quadruplex DNA, a non-canonical secondary DNA structure, to inhibit cancerous cell proliferation. G-quadruplex DNA is found in the guanine-rich region of the chromosome that has an important role in protecting chromosomes from unwinding, participate in gene expression, contribute in the control replication of cells and more. In this research, rationally designed, synthetic cyanine dye derivatives, which were tested under physiologically relevant conditions, were found to selectively bind to G-quadruplex over duplex DNA and are favored to one structure over another. The interactions were observed using UV-Vis thermal melting, fluorescence titration, circular dichroism titration, and surface plasmon resonance analysis. For fluorescence and selectivity properties, cyanine dyes, therefore, have the potential to become the detections and/or therapeutic drugs to target cancers and many other fatal diseases.
254

Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

Recht, Daniel 26 July 2012 (has links)
This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold. / Engineering and Applied Sciences
255

Genomic Tools Reveal Changing Plasmodium falciparum Populations

Daniels, Rachel Fath 25 September 2013 (has links)
A new era of malaria eradication programs relies on increased knowledge of the parasite through sequencing of the Plasmodium genome. Programs call for re-orientation at specific epidemiological markers as regions move from control towards pre- and total elimination. However, relatively little is known about the effects of intervention strategies on the parasite population or if the epidemiological cues correspond to effects on the parasite population. We hypothesized that genomic tools could be used to track population changes in Plasmodium falciparum to detect significant shifts as eradication programs apply interventions. Making use of new whole-genome sequencing data as well as GWAS and other studies, we used SNPs as biological markers for regions associated with drug resistance as well as a set of neutral SNPs to identify individual parasites. By utilizing tools developed as proxy for full genomic sequencing of the human pathogen Plasmodium falciparum, we characterized and tracked parasite populations to test for changes over time and between populations. When applied to markers under selection - those associated with reduced antimalarial drug sensitivity - we were able to track migration of resistance-associated mutations in the population and identify new mutations with potential implications for resistance. Using a population genetic analysis toolbox to study changes in neutral allele frequencies in samples from the field, we found significant population changes over time that included restricted effective population size, reduced complexity of infections, and evidence for both clonal and epidemic propagation of parasites.
256

Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits: an Experimental Approach

Berg, Sylvia January 2010 (has links)
Xenoliths preserve evidence of magma-crust interactions in magmatic reservoirs and conduits. They reveal processes of partial melting of country rock, and disintegration into magma. Widespread evidence for frothy xenoliths in volcanic deposits exists, and these evidently indicate processes of gas liberation, bubble nucleation and bubble growth. This report focuses on textural analysis of frothy sandstone xenoliths from Krakatau in Indonesia, Cerro Negro in Nicaragua, Cerro Quemado in El Salvador and from Gran Canaria, Canary Islands, and involves attempts to experimentally reproduce xenolith textures. To achieve this, magmatic conditions acting upon country rock in volcanoes are simulated by subjecting sandstones to elevated temperature and pressure in closed system-autoclaves. Subsequent decompression imitates magma ascent following xenolith entrainment, and is largely responsible for the formation of frothy xenolith textures. The experiments show a range of successive features, such as partial melting, gas-pressure build up, bubble nucleation, growth and development of bubble networks. The experiments closely reproduced textures of natural xenoliths and help to assess the controlling P-T parameters that encourage efficient bubble growth. Conditions proved ideal between 850˚C and 870˚C and pressure release from 1 kbar. Such conditions limit bubble overprinting by secondary crystallization and melt infilling. Country rock lithology proved vital regarding gas pressure build-up and resulting bubble nucleation during decompression. In particular, increased water content and relict crystals in the melt produced appear to ease and promote gas liberation by enabling early and effective bubble nucleation. Moreover, experiments confirm a decisive role for bubble coalescence. These results attest to the great potential of country rock to develop interconnected bubble networks upon magma contact, exsolving large amounts of crustal volatiles into the magma. Volatile input involves a change in magma viscosity and thus an accompanied change in disruptive behaviour, and may hence be responsible for increased potential to cause explosive volcanic eruptions. Moreover, H2O and CO2 vapour are severe greenhouse gases, which seems to be added to the atmosphere from crustal rocks via recycling by volcanic activity, and may have yet underappreciated effects on Earth’s climate.
257

Percutaneous absorption of cyclizine and its alkyl analogues / Lesibana Mishack Monene

Monene, Lesibana Mishack January 2003 (has links)
Percutaneous delivery of drugs promises many advantages over oral or intravenous administration, such as a better control of blood levels, a reduced incidence of systemic toxicity, an absence of hepatic first-pass metabolism, better patient compliance, etc. However, the dermal drug transport is limited by the unsuitable physicochemical properties of most drugs and the efficient barrier function of the skin. Thus, numerous attempts have been reported to improve topical absorption of drugs, concentrating mainly on the barrier function of the stratum corneum by use of penetration enhancers and/or skin warming. An alternative and interesting possibility for improved dermal permeability is the synthesis of derivatives or analogues with the aim of changing the physicochemical properties in favour of skin permeation, efficacy and therapeutic value. Cyclizine (I) is an anti-emetic drug primarily indicated for the prophylaxis and treatment of nausea and vomiting associated with motion sickness, post operation and Meniere's disease. It acts both on the emetic trigger zone and by damping the labyrinthine sensitivity. Pharmacologically it has anti-histaminic, antiserotonergic, local anaesthetic and vagolytic actions. It is widely used and also suitable for children from six year of age. Percutaneous absorption of (I) can, among others, avoid the "first-pass" effect and the discomfort of injection. The main objective of this study was to explore the feasibility of percutaneous absorption of (I) and its alkyl analogues via physicochemical characterization and assessment of their permeation parameters. The intent was also to establish a correlation between the physicochemical properties of these compounds and their percutaneous rate of absorption. To achieve these objectives, the study was undertaken by synthesizing the alkyl analogues and determining the physicochemical parameters relevant to skin transport. Identification and level of purity for the prepared analogues were confirmed by mass spectrometry (MS), nuclear magnetic resonance (NMR) spectrometry and infrared (IR) spectrometry. Experimental aqueous solubility (25 °c & 32 °C) and partition coefficient for each compound were determined. In vitro permeation studies were performed at pH 7.4, using Franz diffusion cells with human epidermal membranes. Diffusion experiments were conducted over a period of 24 hours maintaining a constant temperature (37 DC) by means of water bath. All samples were analysed by high pressure liquid chromatography (HPLC). Cyclizine (I) has a methyl group at N-4. Increasing the alkyl chain length on N-4 of the piperazine ring resulted' in compounds with lower melting points and higher water solubility than (I). (II) exhibited 3-fold increase in water solubility, followed by (IV) with about 2.5 fold increase. The water solubility of (III) was almost the same as that of (I). Log partition coefficients increased linearly with increasing alkyl chain length. The analogues therefore, possessed more favourable physicochemical properties to be delivered percutaneously. Indeed, the in vitro skin permeation data proved that these analogues could be delivered more easily than (I) itself. The flux of (I) was 0.132 ug/cm2/h in a saturated aqueous solution. Compound (II) resulted in a 53-fold (6.952 ug/cm2/h) increase in permeation compared to (I). (III) and (IV) resulted in a 2- and 5fold enhancement of permeation respectively. Based on the results of the study, it seems that increased aqueous solubility and low level of crystallinity play a vital role in optimizing percutaneous absorption of (I) and its alkyl analogues. But the importance of the effect of increased lipophilicity cannot be ignored. The low percutaneous• absorption of (I) might be attributed to its low aqueous solubility and increased crystallinity, as is evident from the higher melting point than the analogues. From all the permeability data using aqueous solutions, it is clear that compound (II) is the best permeant of this series and in addition it is known that this compound antagonizes the effects of histamine. / Thesis (M.Sc. (Pharm.))--North-West University, Potchefstroom Campus, 2004.
258

INFLUENCE OF MELTING RATE ON THE DISSOCIATION OF GAS HYDRATES WITH THE KINETIC INHIBITOR PVCAP PRESENT

Gulbrandsen, Ann Cecilie, Svartaas, Thor Martin 07 1900 (has links)
The kinetic inhibitor Poly Vinyl Caprolactam (PVCap) was added as a kinetic inhibitor to the gas-water system. Different hydrate formers were used in order to obtain formation of the different hydrate structures (sI, sII and sH). All hydrate structures were formed with PVCap. The effect of applying different melting rates was investigated. The isochoric technique was used to obtain dissociation temperatures and corresponding pressures. The melting rate was found to be a parameter influencial for the dissociation temperature. Even for very slow melting rates such as 0.0125 Kelvin per hour, the final dissociation temperature was significantly higher that the dissociation temperature for the corresponding non-inhibited system.
259

Tirpstanti Riba / Melting Bound

Penkauskienė, Svetlana 11 January 2007 (has links)
Svetlana‘s Penkauskienė‘s oil painting collection „Tirpstanti riba“(„Melting bound“) consists of eight separate paintings, that covers the idea of similarity an difference of disparity in age, realized through oil painting. Man‘s figure disappears from paintings of modern art in nowadays. Despite that man‘s figure were the most common and essential piece in paintings of old-world, nowadays it fades. Today the mainstream of modern and abstract art allows us to analyze man‘s physiologic, psychologic and philosophic aspects even without touching the substantial. That is why it is essential to unfold this problem now, when it’s so distant in nowadays and in the other hand it’s so close to our life. In my collection of paintings I try to represent the disparity in age in a different way, I try to discover the similarity and difference of young and old. The intercourse problem between young and old is not only a nowadays problem, it was relevant in all times, but nowadays in these youth-cult times, this is a matter of great importance. So it was my decision to analyze those two separate, always different and always stationary, aspects of youth and age. Whole art work was realized through oil painting. It’s a steady and durable technique, which ensures the work to be done like it was meant to be done in a first place. The aim of art is not the truth, - it’s beauty. Art is not a mirror of reality – it creates one. And it even doesn’t matter if this “new” reality doesn’t represent... [to full text]
260

Magnetotelluric constraints on the role of fluids in convergent plate boundaries

Rippe, Dennis Unknown Date
No description available.

Page generated in 0.0513 seconds