• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafiltration of Partially Degraded Starch Solution

Demessie, Berhanu January 2002 (has links)
<p>Desizing wastewater is largely responsible for the chemical oxygen demand (COD) load in the textile industry wastewater. A larger portion of COD comes from degraded starch in desizing wastewater. Removing the starch from the wastewater by an ultrafiltration process may reduce the environmental problem caused by the textile factory. If the treatment is made in such a way that all starch components are removed from the wastewater, the treated water can be reused by the factory. If the starch in the concentrate is stable, it can also be reused as a sizing agent. This will give the factory an economic advantage.</p><p>In this thesis we have studied the fouling mechanisms involved in the ultrafiltration of solution with partially degraded starch in order to find the treatibility of such solutions. The work has mainly been directed to uncover how the different fouling mechanisms depend on the operating parameters, and to find the performance of selected membranes. In addition, different models were evaluated for their validity in predicting the performance of the membranes and the data was fitted to the model that give the best prediction and are physically more meaningful. In addition, the starch solution was concentrated, and the flux, concentration, retention and rejection profiles as a function of concentrating time were investigated.</p><p>For the study, we used a partially degraded starch solution as a model solution. The solution was prepared in the laboratory by enzymatic degradation of potato starch to different levels. In order to evaluate the reproducibility of the degraded starch, three replicates were prepared. The reproducibility was determined by comparing the molar mass distribution from HPLSEC analysis and the concentration of reducing sugar from a DNS test for the replicates. The analyses show very good reproducibility. Three starch model solutions with three different degradation levels were chosen for our ultrafiltration experiments to investigate the effect of average molar mass of the starch.</p><p>For the ultrafiltration of the solution ES625 (from PCI) and MPT-U20 (from KOCH) membranes were used. Both membranes were used in the investigation of the contribution of different fouling mechanisms to the flux decline during ultrafiltration of the solution. In the evaluation of the performance of ultrafiltration of the starch solution, however, only the ES625 membrane was used. According to the manufacturers, both membranes have nearly equal pure water flux and MWCO. But in our test, we observed a higher and different pure water flux for each type of membrane. The ES625 had a lower flux (higher retention) than the MPTU20 membrane.</p><p>In the ultrafiltration of partially degraded starch solution the permeate flux declines very fast and, for a low feed concentration, it reaches a steady state in a very short time. The steady state time was observed to increase with concentration, molar mass and transmembrane pressure drop, and to decrease with cross flow velocity. All the three fouling mechanisms (concentration polarization, adsorption and deposition) were responsible for the flux decline. The major observed contributors are, however, adsorption and deposition. Adsorption is largely responsible at low-pressure operation while the deposition fouling effect is dominant at higher pressures, near or beyond the limiting flux.</p><p>For the ES625 membrane, the contribution of adsorptive fouling increases with concentration and decreases with molar mass of the starch, temperature and pH at a given transmembrane pressure and cross flow velocity. The effect of the operating parameters on the depositional fouling is in line with literature. It increases with pressure, concentration, molar mass and temperature, and decreases with cross flow velocity. Its dependence on pressure can be expressed by a power function with exponent larger than 1.0. This seems to due to an increase in thickness and compaction of the starch gel/deposit at the membrane surface as the transmembrane pressure drop is increased. The contribution of the concentration polarization is also dependent on concentration, cross flow velocity and pressure. Its relative contribution increases with concentration while it decreases with an increase in cross flow velocity. In the turbulent flow regime the relation between the resistance contributed by concentration polarization increases almost linearly with transmembrane pressure drop. In the laminar flow regime, however, the relative contribution of the resistance due to concentration polarization increases for the lower range of pressure and decreases for the higher range of pressure. Its relative contribution also increases with temperature and decreases with increasing molar mass. But the overall fouling resistance in the ultrafiltration of the starch solution increases with feed concentration, molar mass of the starch and transmembrane pressure drop and decreases with cross flow velocity and temperature.</p><p>The trend of the flux loss due to all fouling mechanisms for MPT-U20 membrane is similar to ES625 membrane except for adsorption and concentration polarization with changes in concentration and molar mass. The difference could be a result of the difference in morphological properties between the two membranes and the experimental procedures used in determining flux data that used for calculating the contributions. From the pure water flux and the retention data, the ES625 membrane seemed to have a smaller pore size than the MPT-U20 membrane.</p><p>Among the ultrafiltration models, the resistances-in-series model was chosen for its provision to include all the fouling mechanisms into the model. When our permeate flux data was fitted to the model, it gives a good fit. However, the model fails to give realistic estimates of the contribution of the individual fouling mechanisms. In order to improve this problem, the model was modified by introducing osmotic pressure across the membrane in such a way that the effect of concentration polarization is accounted for. This modified model is more physically meaningful and gives a realistic estimate of the contribution the reversible and irreversible fraction of the overall resistance.</p><p>In concentrating mode operation, the permeate was continuously withdrawn and hence, the concentration of starch in the feed tank was increased. At an early stage of ultrafiltration, the permeate flux appeared to increase slightly, which seems, a result a shear thinning of the starch solution when the solution was pumped through the system. For the rest of the operation, the flux was decreasing, the retention was increasing and the rejection of the membrane was shifted to a lower molar mass as the solution in the feed tank got more concentrated as expected. The shift of rejection to the lower molar mass region is due to the fouling layer that reduces the accessibility of the pores of the membrane.</p><p>Generally, the flux we obtained in ultrafiltration of a partially degraded starch solution with the ES625 tubular membrane is equal or better than the reported values from an existing ultrafiltration plant that has been used in the textile industry to recover a synthetic sizing agent (PVA) from the desizing wastewater. The retention is, however, rather low. Two or more stages of treatment are needed to get all starch components removed from the wastewater and make the treated water reusable (recycled).</p>
2

Ultrafiltration of Partially Degraded Starch Solution

Demessie, Berhanu January 2002 (has links)
Desizing wastewater is largely responsible for the chemical oxygen demand (COD) load in the textile industry wastewater. A larger portion of COD comes from degraded starch in desizing wastewater. Removing the starch from the wastewater by an ultrafiltration process may reduce the environmental problem caused by the textile factory. If the treatment is made in such a way that all starch components are removed from the wastewater, the treated water can be reused by the factory. If the starch in the concentrate is stable, it can also be reused as a sizing agent. This will give the factory an economic advantage. In this thesis we have studied the fouling mechanisms involved in the ultrafiltration of solution with partially degraded starch in order to find the treatibility of such solutions. The work has mainly been directed to uncover how the different fouling mechanisms depend on the operating parameters, and to find the performance of selected membranes. In addition, different models were evaluated for their validity in predicting the performance of the membranes and the data was fitted to the model that give the best prediction and are physically more meaningful. In addition, the starch solution was concentrated, and the flux, concentration, retention and rejection profiles as a function of concentrating time were investigated. For the study, we used a partially degraded starch solution as a model solution. The solution was prepared in the laboratory by enzymatic degradation of potato starch to different levels. In order to evaluate the reproducibility of the degraded starch, three replicates were prepared. The reproducibility was determined by comparing the molar mass distribution from HPLSEC analysis and the concentration of reducing sugar from a DNS test for the replicates. The analyses show very good reproducibility. Three starch model solutions with three different degradation levels were chosen for our ultrafiltration experiments to investigate the effect of average molar mass of the starch. For the ultrafiltration of the solution ES625 (from PCI) and MPT-U20 (from KOCH) membranes were used. Both membranes were used in the investigation of the contribution of different fouling mechanisms to the flux decline during ultrafiltration of the solution. In the evaluation of the performance of ultrafiltration of the starch solution, however, only the ES625 membrane was used. According to the manufacturers, both membranes have nearly equal pure water flux and MWCO. But in our test, we observed a higher and different pure water flux for each type of membrane. The ES625 had a lower flux (higher retention) than the MPTU20 membrane. In the ultrafiltration of partially degraded starch solution the permeate flux declines very fast and, for a low feed concentration, it reaches a steady state in a very short time. The steady state time was observed to increase with concentration, molar mass and transmembrane pressure drop, and to decrease with cross flow velocity. All the three fouling mechanisms (concentration polarization, adsorption and deposition) were responsible for the flux decline. The major observed contributors are, however, adsorption and deposition. Adsorption is largely responsible at low-pressure operation while the deposition fouling effect is dominant at higher pressures, near or beyond the limiting flux. For the ES625 membrane, the contribution of adsorptive fouling increases with concentration and decreases with molar mass of the starch, temperature and pH at a given transmembrane pressure and cross flow velocity. The effect of the operating parameters on the depositional fouling is in line with literature. It increases with pressure, concentration, molar mass and temperature, and decreases with cross flow velocity. Its dependence on pressure can be expressed by a power function with exponent larger than 1.0. This seems to due to an increase in thickness and compaction of the starch gel/deposit at the membrane surface as the transmembrane pressure drop is increased. The contribution of the concentration polarization is also dependent on concentration, cross flow velocity and pressure. Its relative contribution increases with concentration while it decreases with an increase in cross flow velocity. In the turbulent flow regime the relation between the resistance contributed by concentration polarization increases almost linearly with transmembrane pressure drop. In the laminar flow regime, however, the relative contribution of the resistance due to concentration polarization increases for the lower range of pressure and decreases for the higher range of pressure. Its relative contribution also increases with temperature and decreases with increasing molar mass. But the overall fouling resistance in the ultrafiltration of the starch solution increases with feed concentration, molar mass of the starch and transmembrane pressure drop and decreases with cross flow velocity and temperature. The trend of the flux loss due to all fouling mechanisms for MPT-U20 membrane is similar to ES625 membrane except for adsorption and concentration polarization with changes in concentration and molar mass. The difference could be a result of the difference in morphological properties between the two membranes and the experimental procedures used in determining flux data that used for calculating the contributions. From the pure water flux and the retention data, the ES625 membrane seemed to have a smaller pore size than the MPT-U20 membrane. Among the ultrafiltration models, the resistances-in-series model was chosen for its provision to include all the fouling mechanisms into the model. When our permeate flux data was fitted to the model, it gives a good fit. However, the model fails to give realistic estimates of the contribution of the individual fouling mechanisms. In order to improve this problem, the model was modified by introducing osmotic pressure across the membrane in such a way that the effect of concentration polarization is accounted for. This modified model is more physically meaningful and gives a realistic estimate of the contribution the reversible and irreversible fraction of the overall resistance. In concentrating mode operation, the permeate was continuously withdrawn and hence, the concentration of starch in the feed tank was increased. At an early stage of ultrafiltration, the permeate flux appeared to increase slightly, which seems, a result a shear thinning of the starch solution when the solution was pumped through the system. For the rest of the operation, the flux was decreasing, the retention was increasing and the rejection of the membrane was shifted to a lower molar mass as the solution in the feed tank got more concentrated as expected. The shift of rejection to the lower molar mass region is due to the fouling layer that reduces the accessibility of the pores of the membrane. Generally, the flux we obtained in ultrafiltration of a partially degraded starch solution with the ES625 tubular membrane is equal or better than the reported values from an existing ultrafiltration plant that has been used in the textile industry to recover a synthetic sizing agent (PVA) from the desizing wastewater. The retention is, however, rather low. Two or more stages of treatment are needed to get all starch components removed from the wastewater and make the treated water reusable (recycled).
3

Uppfuktningens inverkan på mikrobiologisk aktivitet irökgaskondenseringssystem – en studie vid Fortum Värmes kraftvärmeverk 8 / Impact of Humidification on Microbiological Activity in Flue gas Condensation Systems – a study at Fortum Värmes Combined Heat and Power Plant 8

Karlsson, Sofia January 2017 (has links)
Värtaverkets kraftvärmeverk 8 (KVV8) driftsattes 2016 och är ett av världens största biobränslebaserade kraftvärmeverk. Verket tar till vara på energi ur restprodukter från skogsindustrin och pannan på KVV8 har en ångeffekt på 345 MW. Till ångeffekten kan ytterligare 100 MW värme adderas tack vare rökgaskondenseringen. Rökgaskondenseringsanläggningen är därmed en viktig del av värmeproduktionen på KVV8. I anslutande kondensatreningsanläggning renas rökgaskondensatet och på så vis tillförs vattenångcykeln nytt processvatten. Kondensatreningsanläggningen på KVV8 är baserad på membranteknik vilken har många fördelar, exempelvis hög verkningsgrad. En nackdel är att tekniken är känslig för igensättningar. I vattensystem finns alltid mikroorganismer, vilka kan skapa stora driftmässiga problem vid bildandet av biofilm. Vid driftsättning av KVV8 uppstod problem med igensättningar av membran i kondensatreningen orsakade av mikroorganismer. För att få bukt medproblemen rengjordes rökgaskondenseringssystemet vid driftstopp och natriumhypoklorit doserades kontinuerligt till både rökgaskondensor och uppfuktare. Åtgärderna gav inte önskad effekt då driftproblemen bestod under hela driftsäsongenvåren 2016. Orsaken till problemen ansågs vara rökgaskondenseringsanläggningen och främst uppfuktaren. Trots att problemet är relativt utbrett bland Sveriges kraftvärmeverk har få studier gjorts på ämnet. Arbetet har utförts på uppdrag av AB Fortum Värme Värtaverket under hösten 2016. Syftet med arbetet har varit att undersöka uppfuktarens inverkan på mikrobiologiskaktivitet i rökgaskondenseringssystem och även att beskriva kemiska, driftmässiga samt konstruktionsmässiga metoder för att minimera problemen. KVV8 är konstruerad för att använda förbränningsluft från bränslelagret, vilken skulle kunna ha en inverkan på mikrobiologisk aktivitet. Under hösten 2016 användes förbränningsluft från pannhuset för att studera hur val av förbränningsluft påverkade problemen. Uppfuktarens inverkan på mikrobiologisk aktivitet har studerats genom att analysera ett antal utvalda driftparametrar och mikrobiologiska vattenprover. Driftparametrarna som har analyserats är följande: • Uppfuktningsgrad• Val av förbränningsluft (pannhusluft/bränslelagerluft)• Ångeffekt (laständring)• Val av bränsle• Dosering av natriumhypoklorit• Flöde av kondensat till kondensatrening• Temperaturer på rökgas, förbränningsluft och rökgaskondensat• Fukthalt och syrgashalt i rökgaser Analysen visade att den mikrobiologiska aktiviteten var låg under perioden då arbetet utfördes. Därmed var möjligheterna att hitta samband mellan driftparametrar och mikrobiologiska provsvar begränsade. Av denna anledning jämfördes även driftförhållanden mellan en period då problemen var omfattande och en period utan problem. De tre största driftskillnaderna mellan perioderna var: förbränningsluft, dosering av natriumhypoklorit och ångeffekt/laständring. Det är troligt att skillnaden i mikrobiologisk aktivitet beror på någon av dessa driftskillnader. Driftproblemen var omfattande när förbränningsluft från bränslelagret användes, doseringen av natriumhypoklorit var lägre och laständringarna mer frekventa. För att kunna avgöra hur stor inverkan valet av förbränningsluft har, bör studien fortgå med förbränningsluft från bränslelagret samtidigt som övriga driftparametrar hålls relativt konstanta. Mikrobiologisk tillväxt har inte kunnat knytas till uppfuktningsgraden. Valet av förbränningsluft och doseringen av natriumhypoklorit har dock en direkt inverkan på miljön i uppfuktaren. Därmed kan inte den mikrobiologiska aktiviteten i systemet anses oberoende av uppfuktaren trots att uppfuktningsgraden inte har kunnat knytas till problemet. I rapporten beskrivs och diskuteras nio olika bekämpningsmetoder av mikroorganismer med avseende på verkningsgrad, ekonomi och miljömässig påverkan. Bekämpningsmetoderna som utvärderats är klor, UV, klordioxid, ozon, brom, perättiksyra, Kuriverter IK 110 och nanomaterial. Att hitta en ideal metod är svårt då den helst ska vara selektiv, miljövänlig och samtidigt ge en god effektivitet. Ett stort problem med många metoder är att desinfektionsbiprodukter bildas vid oxidationen. I vilken utsträckning dessa bildas beror på val av metod och vattnets sammansättning. Vilken metod som är mest effektiv beror också på vattnetssammansättning, men även på typ av mikroorganism. Därav analyserades rökgaskondensatets sammansättning. Studien visade att rökgaskondensatet var tillräckligt rent då alla jämförbara värdena, förutom ammonium och nitrit, understeg rekommenderade gränsvärden för dricksvatten. Rökgaskondensatet håller därmed en tillräckligt hög kvalitet för att alla metoder som diskuterats kan övervägas för KVV8. Ingen av de analyserade metoderna är dock riskfria ur ett miljömässigt perspektiv och ingen av metoderna kan sägas ge en högre effektivitet på KVV8 utan vidare studier. / Värtaverkets combined heat and power plant 8 (CHP 8) was put into operation in 2016 and is one of the largest bio fuelled CHPs in the world. The plant makes use of energy in waste products from the forest industry and the steam capacity of the boiler at CHP 8 is 345 MW. The flue gas condensation system adds another 100 MW heat to CHP 8:s capacity. Flue gas condensation is therefore an essential part of the heat production at CHP 8. In the acceding water treatment plant the flue gas condensate is purified and thus provides the water-steam cycle with new water. The water treatment plant is based on membrane technology, which has many advantages, for example high efficiency. One disadvantage with membrane technology is that it is sensitive to fouling. Microorganisms are always present in water systems and they create biofilm, therefore they are prone to cause operational problems. When CHP 8 was put into operation problems arose with fouling of membranes caused by microorganisms. To overcome the problems the system was cleaned and sodium hypochlorite was added to the system continuously. The flue gas condensation system, and especially the humidifier, was considered to be the cause of the microbiological activity. Even though the problem is relatively widespread across CHPs in Sweden, very few studies have been made on the subject.   This thesis has been written on behalf of AB Fortum Värme Värtaverket during the autumn term of 2016. The aim of the work was to examine the impact of humidification on microbiological activity in flue gas condensation systems. The thesis also gives a description of chemical, operational and structural methods to minimize problems caused by microorganisms. CHP 8 is designed to use combustion air from the fuel stock, which may affect microbiological activity. For this reason, combustion air from the boiler was used instead of combustion air from the fuel stock during the autumn of 2016. Impact of humidification on microbiological activity has been studied by analysing selected operational parameters and microbiological water samples. The operational parameters that have been studied include the following:   • Degree of humidification • Combustion air (boiler/fuel stock) • Steam effect • Fuel • Dosage of sodium hypochlorite • Flow rates • Temperatures of flue gas, combustion air and flue gas condensate • Moisture content and oxygen content in the flue gas   The study showed that, when the thesis was conducted, the microbiological activity was low and thus the potential of finding a connection between operational parameters and microbiological test results were low. For this reason operational conditions were compared between the period with problems and the period without.   It is likely that the difference in microbiological activity derives from the difference in operational conditions. The three primary differences in operational conditions between the two periods was type of combustion air, dosage of sodium hypochlorite and operational continuity. The operational problems were comprehensive when combustion air from the fuel stock was used, dosage of sodium hypochlorite low and the operational continuity low. To determine how big impact type of combustion air has on microbiological activity the study has to continue with the same operational set but with combustion air from the fuel stock instead of the boiler.   The study has not been able to associate microbiological activity with degree of humidification. Nevertheless type of combustion air and dosage of sodium hypochlorite has an immediate impact on the environment in the humidifier and thus microbiological activity cannot be considered independent of humidification.   This thesis describes and discusses nine different disinfection methods with respect to efficiency, economy and environmental impact. The disinfection methods that have been studied are chlorine, UV, chlorine dioxide, ozone, bromine, per acetic acid, Kuriverter IK 110 and nano materials. It is difficult to find an ideal disinfection method since it needs to have good selectivity, be environmentally friendly and at the same time provide good efficiency. One problem associated with disinfection is that disinfection by-products are formed by oxidation. To what extend disinfection byproducts will be formed depends on the disinfection method and the composition of the water. The efficiency of the methods is also dependent on the composition of the water and also the type of microorganism. Therefore the flue gas condensate composition was examined. The study showed that the flue gas condensate was sufficiently clean since all analogue values, except ammonium and nitrite, was lower than recommended values for drinking water. Thus the flue gas condensate has a sufficiently high quality for all the above mentioned disinfection methods to be efficient. None of the disinfection methods discussed are safe from an environmental point of view. Therefore alternative methods should be evaluated for use in the long term.
4

Utilization of Biomethane in Decarbonising India´s Energy Mix

Ravindra Kunkulol, Niraj January 2023 (has links)
This thesis investigates the potential of biomethane production in India, the impact of its integration into the energy mix, and the corresponding Greenhouse Gases (GHG) emission and potential reduction. India, with its huge population and being an agriculturally rich country, produces gigantic amounts of biodegradable waste from various sources such as Municipal Solid Waste (MSW),agricultural waste, animal husbandry, sugar industry, etc. Three different end-use scenarios: electricity generation, cooking fuel, and transportation fuel—are assessed in order to determine the decree to which current fossil fuels may be replaced and the net amount of greenhouse gas emissions that are saved by using this biomethane. The total biomethane generation potential according to the study conducted by the Ministry of New and Renewable Energy (MNRE) is 25.6 Billion Metric Standard Cubic Meters (BMSCM) and with the most efficient upgrading technology available (3-stage membrane filtration) the useful potential is 25.4 BMSCM. The electricity that can be produced from the biomethane potential available is 159.1 TWh, which corresponds to the optimistic value of GHG emission reduction of 89million tons. When used as a cooking fuel, biomethane can contribute immensely to satisfying the final thermal needs of India. It can satisfy more than half the combined total thermal energy from Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) consumed in India and, at the same time, reduce 46.2 million tons of GHG emissions caused by it. The transportation sectoris the most suited and easy to adapt as an end-use application for biomethane. It was observed that biomethane as a replacement for Petrol for road transportation fuel presents the best scenario, since biomethane can reduce more than 71% of its consumption and respectively reduce more than 57 million tons of GHG emission, which is the second highest after electricity production. This thesis puts up a strong case to look at biomethane as a very important fuel towards India’starget to be net zero by 2070 and its plans to be self-reliant. Moreover, biomethane production usingthe path of anaerobic digestion provides not only a renewable source of energy but also food security with digestate being used as fertilizer and an opportunity to address the impact of climate change by preventing the emission of methane in the atmosphere which has a global warming potential of28 and burning of agricultural waste in the open field. Eventually, the production of biomethane prevents soil, air and water pollution. / Denna avhandling undersöker potentialen för biometanproduktion i Indien, effekterna av dess integration i energimixen och motsvarande utsläpp och potential för växthusgaser (GHG). minskning. Indien, med sin enorma befolkning och är ett jordbruksrikt land, producerar gigantiska mängder biologiskt nedbrytbart avfall från olika källor som kommunalt fast avfall (MSW), jordbruksavfall, djurhållning, sockerindustri, etc. Tre olika slutanvändningsscenarier: el produktion,matlagningsbränsle och transportbränsle – utvärderas för att fastställa till vilket dekret nuvarande fossila bränslen får ersättas och nettomängden växthusgasutsläpp som sparas genom att använda denna biometan. Den totala biometangenereringspotentialen enligt studien utförd av ministeriet för ny och förnybarenergi (MNRE) är 25,6 miljarder metriska standardkubikmeter (BMSCM) och med den mest effektiva uppgraderingstekniken som finns tillgänglig (3-stegs membranfiltrering) är den användbara potentialen 25,4 BMSCM. Den el som kan produceras från den tillgängliga biometanpotentialen är 159,1 TWh medan det optimistiska värdet av växthusgasutsläpp som är möjligt med användning av biometan för elproduktion är 89 miljoner ton. När biometan används som matlagningsbränsle kan det bidra oerhört mycket för att tillfredsställa Indiens slutliga termiska behov. Det kan tillfredsställa mer än halva finalen termisk energi som förbrukas i Indien och samtidigt samma miljon ton i utsläpp av växthusgaser som orsakas av den. Transportsektorn är den mest lämpade och lätta att anpassa som slutanvändningsprogram för biometan. Det observerades att biometan som ersättning för bensin som transportbränsle är det bästa scenariot eftersom biometan kan minskamer än 71 % av sin förbrukning och respektive minska mer än 57 miljoner ton växthusgasutsläpp, vilket är det näst högsta efter elproduktion. Den här avhandlingen ger ett starkt argument för att se biometan som ett mycket viktigt bränslemot Indiens mål att vara nettonoll år 2070 och dess planer på att vara självförsörjande. Dessutom ger biometanproduktion genom att använda vägen för anaerob rötning inte bara en förnybar energikälla utan också livsmedelssäkerhet med rötgas som används som gödningsmedel och en möjlighet att ta itu med effekterna av klimatförändringar genom att förhindra utsläpp av metan i atmosfären som har en global uppvärmningspotential på 28 och förbränning av jordbruksavfall på det öppna fältet. Så småningom förhindrar produktionen av biometan mark-, luft- och vattenföroreningar.
5

Optimizing Conditions of Coagulation for Removal of Natural Organic Matter (NOM) : Comparison of Removal Efficiency of NOM When Using Bench-Scale Inline Coagulation Over Ultrafiltration and Classical Jar Tests / Optimering av koaguleringsförhållanden för avskiljning av naturligt organiskt material (NOM) : Jämförelse av avskiljningseffektivitet för NOM vid användning av inline-koagulering tillsammans med ultrafiltrering i bänkskala samt klassisk testning

Oveisy, Hiwa January 2023 (has links)
Abstract The removal of Natural Organic Matter (NOM) from water supplies is crucial for the provision of clean, safe drinking water. Lab-scale experiments have been extensively utilized in water treatment facilities to optimize this process. The most used lab-scale method is known as jar test. However, with emerging membrane filtration, lab-scale inline coagulation has been recently utilized to mimic the inline coagulation over membrane filtration in water treatment plants (WTPs).     This study aims to compare the jar test with inline coagulation micro pilot methods from different aspects, including the NOM removal, time, and cost needed for each process. Three case studies were conducted using different water sources in Sweden: Katrineholm, Mälaren, and Mjörn.     In the experiments conducted to find the optimal NOM removal condition, the inline coagulation micro pilot method outperforms the jar test in terms of removal efficiency. In the Katrineholm case, the micro pilot method with a coagulant dosage of 4.5mg/l Al at pH 6.7 achieved removal efficiencies of 63% for fluorescent dissolved organic matter (fDOM), whereas the jar test showed 60% for fDOM but with a significantly higher coagulant dosage (7mg/l) . In the Mälaren case, the micro pilot method using a dosage of 2.5mg/l Al at pH 6.4 yielded removal efficiencies of 62% for UV254, absorbing organic matter and the jar test showed almost the same removal (64%) for UV254 but with a significantly higher coagulant dosage. Finally, in the Mjörn case, the micro pilot method with a coagulant dosage of 3.5mg/l Al at a pH of 6.6 resulted in removal efficiencies of 76% for UV254, the jar test also resulted in 76% for UV254 at the same pH level.     While the micro pilot method showed better removal efficiencies, it consumed more chemicals compared to the jar test. The micro pilot experiments required higher volumes of coagulant and additional chemical backwashing after each set of experiments. In contrast, the jar test method used lesser quantities of coagulant and chemicals due to the smaller scale of the experiments.     The findings of this study highlight the superiority of the inline coagulation micro pilot method over the jar test for optimizing NOM removal in water treatment processes. Despite the jar test being quicker and more cost-effective, it often required higher coagulant dosages to achieve comparable results. This was mainly because jar test demands heavy and large enough flocs to be removed from the water. Conversely, the micro pilot method, although more time-consuming and costly, provided more precise coagulant dosage control, resulted in higher removal efficiencies, and offered a more comprehensive understanding of the coagulation process. This is achieved by using a sensor called EXO sensor, which allows for immediate monitoring of the treatment results.
6

Comparative life cycles assessment on a drinking water treatment plant / Jämförande livscykelanalys av ett reningsverk för dricksvatten

Simsek, Muhammed-Enes January 2024 (has links)
Climate change and increasing population demands expansion of infrastructures in urban areas. Drinking water treatment plants are part of the critical infrastructure and must upgrade in the future. However, expansions and technological advancements often come with impacts on the environment. Therefore, this thesis compares two drinking water treatment technologies regarding its environmental impacts through a life cycle assessment. In specific, the thesis elaborates the impacts of membrane precipitation and conventional precipitation in the suspended solids removal stage at a treatment plant in Piteå, Sweden. The research addresses the environmental challenges posed by traditional and modern water treatment methods, providing insights and knowledge to more sustainable water practices. The research involves an attributional, comparative life cycle assessment. The findings from this thesis intend to guide decision-making for future drinking water treatment plant designs.  The research was conducted through an attributional and comparative LCA using SimaPro software based on ISO 14040-series standards. This approach allowed for a detailed analysis of both the operational and construction phases of the treatment technologies, considering various environmental impact categories.  The results indicate that membrane system presents for most impact categories, a lower  environmental impact in the combined configuration scenario. The combined configuration scenario includes for the membrane system calcium carbonate, aluminium sulfate and 95% reduced hypochlorite consumption. The conventional system considers in the combined configuration scenario aluminum sulfate and calcium carbonate This is primarily due to its efficiency in reducing chemical usage such as coagulants. However, if both systems use the same chemical composition (same coagulant, pH-controlling chemicals as in the base scenario), the conventional system becomes more environmentally friendly than the membrane system in most impact categories. This is mainly due to the additional CEB chemical consumption of the membrane system, which nullifies the advantage of lower consumed coagulants. Compared to the operational phase in both systems, the construction phase is insignificant over the lifetime of the treatment plants. The major hotspots are identified as operational chemicals and chemical enhanced backwash chemicals, which are used for the membrane system only. Scenario analysis shows that chlorine/aluminum-based chemicals such as polyaluminum chloride and hypochlorite have a high environmental impact and with reducing or even changing these chemicals major improvements can be achieved. Especially changing aluminum-based chemicals to iron-based chemicals show a significant decrease of impacts in all categories. Further, the scenario analysis shows that by changing lime to calcium carbonate, the environmental impacts can be reduced significantly. Therefore, the future focus should rely on reducing and changing chemicals, especially switching aluminum/chlorine based to iron-based chemicals. / Klimatförändringarna och den ökande befolkningen kräver utbyggnad av infrastrukturen i stadsområden. Reningsverk för dricksvatten är en del av den kritiska infrastrukturen och måste uppgraderas i framtiden. Expansioner och tekniska framsteg medför dock ofta påverkan på miljön. Detta examensarbete jämförs därför två tekniker för dricksvattenberedning med avseende på miljöpåverkan genom en grundlig livscykelanalys. Mer specifikt behandlar avhandlingen effekterna av membranfiltrering och konventionell fällning i steget för avlägsnande av suspenderade ämnen vid ett reningsverk i Piteå, Sverige. Forskningen tar upp de miljömässiga utmaningar som traditionella och moderna vattenbehandlingsmetoder innebär och ger insikter och kunskap om mer hållbara vattenmetoder. Resultaten från denna avhandling är avsedda att vägleda beslutsfattandet för framtida utformningar av dricksvattenreningsverk och erbjuder ett första verktyg för mer hållbara vattenbehandlingsmetoder.  Forskningen genomfördes genom en bokförande och jämförande LCA med hjälp av programvaran SimaPro baserat på ISO 14040-seriens standarder. Detta tillvägagångssätt möjliggjorde en detaljerad analys av både drifts- och konstruktionsfaserna för behandlingsteknikerna, med beaktande av olika miljöpåverkanskategorier.  Resultaten tydar på att membranfiltrering ger en lägre total miljöpåverkan vid vanliga förhållanden. Detta beror främst på dess effektivitet när det gäller att minska kemikalieanvändningen, t.ex. koaguleringsmedel. Men om båda systemen använder samma kemiska sammansättning (samma koaguleringsmedel) är det konventionella systemet mer miljövänligt än det konventionella systemet. Detta beror främst på den extra kemikalieförbrukningen för CEB i membransystemet, vilket upphäver fördelen med lägre förbrukning av koaguleringsmedel. Jämfört med driftsfasen i båda systemen är byggfasen obetydlig under reningsverkens livstid. De viktigaste aspekterna identifieras som driftskemikalier och kemikalier för kemiskt förstärkt backspolning, som endast används för membransystemet. Scenarioanalysen visar att klor-/aluminiumbaserade kemikalier som polyaluminiumklorid och hypoklorit har en hög miljöpåverkan och att stora förbättringar kan uppnås genom att minska eller till och med byta ut dessa kemikalier. Särskilt om aluminiumbaserade kemikalier byts ut mot järnbaserade kemikalier minskar påverkan betydligt i alla kategorier. Vidare visar scenarioanalysen att miljöpåverkan kan minskas betydligt genom att byta ut kalk mot kalciumkarbonat. Därför bör fokus i framtiden ligga på att minska och byta ut kemikalier, särskilt att byta ut aluminium/klorbaserade kemikalier mot järnbaserade kemikalier.

Page generated in 0.0576 seconds