• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 25
  • 19
  • Tagged with
  • 69
  • 59
  • 50
  • 39
  • 35
  • 33
  • 31
  • 30
  • 30
  • 30
  • 22
  • 22
  • 20
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Lokalisation, Proliferation und Differenzierung von STRO-1-positiven Zellen aus dem Geweih von Damhirschen (Dama dama) / Localization, proliferation and differentiation of STRO-1-positiv cells of antlers of fallow deer (Dama dama)

Seymour, Natascha 05 October 2010 (has links)
No description available.
52

Wirkungsweise von Bisphosphonaten auf die Expression verschiedener Knochenmarker in mesenchymalen Stammzellen der Plazenta / Effects on gene expression of different osteogenic markers in mesenchymal stem cells of human placenta

Kemper, Götz 26 October 2010 (has links)
No description available.
53

Comparison of Platelet-Rich Plasma and VEGF-Transfected Mesenchymal Stem Cells on Vascularization and Bone Formation in a Critical-Size Bone Defect

Kasten, Philip, Beverungen, Mirjam, Lorenz, Helga, Wieland, Julia, Fehr, Michael, Geiger, Florian 04 March 2014 (has links) (PDF)
Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF165-transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
54

Gene expression of tendon markers in mesenchymal stromal cells derived from different sources

Burk, Janina, Gittel, Claudia, Heller, Sandra, Pfeiffer, Bastian, Paebst, Felicitas, Ahrberg, Annette B., Brehm, Walter 15 December 2014 (has links) (PDF)
Background: Multipotent mesenchymal stromal cells (MSC) can be recovered from a variety of tissues in the body. Yet, their functional properties were shown to vary depending on tissue origin. While MSC have emerged as a favoured cell type for tendon regenerative therapies, very little is known about the influence of the MSC source on their properties relevant to tendon regeneration. The aim of this study was to assess and compare the expression of tendon extracellular matrix proteins and tendon differentiation markers in MSC derived from different sources as well as in native tendon tissue. MSC isolated from equine bone marrow, adipose tissue, umbilical cord tissue, umbilical cord blood and tendon tissue were characterized and then subjected to mRNA analysis by real-time polymerase chain reaction. Results: MSC derived from adipose tissue displayed the highest expression of collagen 1A2, collagen 3A1 and decorin compared to MSC from all other sources and native tendon tissue (p < 0.01). Tenascin-C and scleraxis expressions were highest in MSC derived from cord blood compared to MSC derived from other sources, though both tenascin-C and scleraxis were expressed at significantly lower levels in all MSC compared to native tendon tissue (p < 0.01). Conclusions: These findings demonstrate that the MSC source impacts the cell properties relevant to tendon regeneration. Adipose derived MSC might be superior regarding their potential to positively influence tendon matrix reorganization.
55

Der Einfluss muriner mesenchymaler Stammzellen auf murine zytokin induzierte Killerzellen in der Kokultur

Bach, Martin 19 June 2014 (has links)
Stimulating lymphocytes with Ifn-γ, anti-CD3, and interleukin-2 promotes the proliferation of a cell population coexpressing T-lymphocyte surface antigens such as CD3, CD8a, and CD25 as well as natural killer cell markers such as NK1.1, CD49, and CD69. These cells, referred to as cytokine-induced killer cells (CIKs), display cytotoxic activity against tumour cells, even without prior antigen presentation, and offer a new cell-based approach to the treatment of malignant diseases. Because CIKs are limited in vivo, strategies to optimize in vitro culture yield are required. In the last 10 years, mesenchymal stem cells (MSCs) have gathered considerable attention. Aside from their uses in tissue engineering and as support in haematopoietic stem cell transplantations, MSCs show notable immunomodulatory characteristics, providing further possibilities for therapeutic applications. In this study, we investigated the influence of murine MSCs on proliferation, phenotype, vitality, and cytotoxicity of murine CIKs in a coculture system. We found that CIKs in coculture proliferated within 7 days, with an average growth factor of 18.84, whereas controls grew with an average factor of 3.7 in the same period. Furthermore, higher vitality was noted in cocultured CIKs than in controls. Cell phenotype was unaffected by coculture with MSCs and, notably, coculture did not impact cytotoxicity against the tumour cells analysed. The findings suggest that cell–cell contact is primarily responsible for these effects. Humoral interactions play only a minor role. Furthermore, no phenotypical MSCs were detected after coculture for 4 h, suggesting the occurrence of immune reactions between CIKs and MSCs. Further investigations with DiD-labelled MSCs revealed that the observed disappearance of MSCs appears not to be due to differentiation processes.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis IV Bibliographische Beschreibung V Abkürzungsverzeichnis VII 1 Einleitung 1 1.1 CIK-Zellen (CIK) 3 1.1.1 Merkmale von CIK-Zellen 3 1.1.2 Wirkungsmechanismen von CIK-Zellen 3 1.1.3 Studienlage 4 1.1.4 Bisherige Ansätze zur Verbesserung der Kultivierungsbedingungen 6 1.2 Mesenchymale Stammzellen (MSC) 7 1.2.1 Allgemein 7 1.2.2 Differenzierung von MSC 7 1.2.3 Heterogenität und Einflussfaktoren der MSC - Identitätsproblematik 8 1.2.4 Charakterisierung von MSC 9 1.2.5 Therapeutische Einsatzmöglichkeiten von MSC 11 2 Zielformulierung 15 3 Material und Methoden 16 3.1 Tiere 16 3.2 Materialien 17 3.2.1 Materialien für Zellkultur 17 3.2.2 Materialien für FACS-Analyse 18 3.2.3 Materialien für Zytotoxizitätsassay 19 3.2.4 Materialien für CFU-F-Assay 20 3.3 Methoden 21 3.3.1 Statistische Auswertung 21 3.3.2 Zellkultur 22 3.3.3 FACS (Fluorescence Activated Cell Sorting) 26 3.3.4 Markierung der MSC mit DiD 28 3.3.5 Zytotoxizitätsassay (LDH-Freisetzungsassay) 29 3.3.6 CFU-F-Assay 32 4 Ergebnisse 34 4.1 Beeinflussung der Wachstumskurve 34 4.1.1 Der Wachstumskurvenverlauf von CIK-Zellen (Kontrollen) 34 4.1.2 Der Wachstumskurvenverlauf von CIK-Zellen in der Kokultur mit MSC 35 4.1.3 Der Wachstumskurvenverlauf in MSC-konditioniertem Medium 37 4.1.4 Der Wachstumskurvenverlauf bei Restimulierung an Tag 14 38 4.2 Beeinflussung des Oberflächenphänotyps 40 4.2.1 Der Oberflächenphänotyp von CIK-Zellen 40 4.2.2 Vergleich Oberflächenphänotyp Kontrollen mit kokultivierten CIK 43 4.3 Beeinflussung der Vitalität 46 4.4 Beeinflussung der Zytotoxizität 48 4.5 Identifizierung der MSC 49 4.5.1 Adhärenz an Plastikoberflächen 50 4.5.2 Fibroblastenähnliche Wachstumsmorphologie 50 4.5.3 Wachstum in Colony-Forming-Units 51 4.5.4 Der Oberflächenphänotyp von MSC 53 4.6 Schicksal der MSC in der Kokultur 54 4.6.1 Der Oberflächenphänotyp der adhärenten Zellen nach Kokultur 54 4.6.2 Kokultur mit DiD gelabelten MSC 57 5 Diskussion 59 5.1 Beeinflussung der Wachstumskurve 60 5.1.1 Mechanismen der Beeinflussung des Wachstumskurvenverlaufs 60 5.1.2 Fehlerbetrachtung 68 5.2 Identifizierung der CIK sowie Beeinflussung von Phänotyp und Vitalität 69 5.3 Beeinflussung der Zytotoxizität 70 5.3.1 Vergleich Zytotoxizität Kontrollen mit Kokulturen 70 5.3.2 Fehlerbetrachtung 71 5.4 Identifizierung der MSC 72 6 Schlussfolgerung 75 7 Ausblick 77 8 Zusammenfassung 79 Literaturverzeichnis 83 Danksagung I
56

Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations

Sygnecka, Katja 23 October 2015 (has links)
The development of new therapeutical approaches, devised to foster the regeneration of neuronal circuits after injury and/or in neurodegenerative diseases, is of great importance. The impairment of dopaminergic projections is especially severe, because these projections are involved in crucial brain functions such as motor control, reward and cognition. In the work presented here, organotypic brain slice co-cultures of (a) the mesostriatal and (b) the mesocortical dopaminergic projection systems consisting of tissue sections of the ventral tegmental area/substantia nigra (VTA/SN), in combination with the target regions of (a) the striatum (STR) or (b) the prefrontal cortex (PFC), respectively, were used to evaluate different approaches to stimulate neurite outgrowth: (i) inhibition of cAMP/cGMP turnover with 3’,5’ cyclic nucleotide phosphodiesterase inhibitors (PDE-Is), (ii) blockade of calcium currents with nimodipine, and (iii) the co-cultivation with bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs). The neurite growth-promoting properties of the tested substances and cell populations were analyzed by neurite density quantification in the border region between the two brain slices, using biocytin tracing or tyrosine hydroxylase labeling and automated image processing procedures. In addition, toxicological tests and gene expression analyses were conducted. (i) PDE-Is were applied to VTA/SN+STR rat co-cultures. The quantification of neurite density after both biocytin tracing and tyrosine hydroxylase labeling revealed a growth promoting effect of the PDE2A-Is BAY60-7550 and ND7001. The application of the PDE10-I MP-10 did not alter neurite density in comparison to the vehicle control. (ii) The effects of nimodipine were evaluated in VTA/SN+PFC rat co-cultures. A neurite growth-promoting effect of 0.1 µM and 1 µM nimodipine was demonstrated in a projection system of the CNS. In contrast, the application of 10 µM nimodipine did not alter neurite density, compared to the vehicle control, but induced the activation of the apoptosis marker caspase 3. The expression levels of the investigated genes, including Ca2+ binding proteins (Pvalb, S100b), immediate early genes (Arc, Egr1, Egr2, Egr4, Fos and JunB), glial fibrillary acidic protein, and myelin components (Mal, Mog, Plp1) were not significantly changed (with the exception of Egr4) by the treatment with 0.1 µM and 1 µM nimodipine. (iii) Bulk BM-MSCs that were classically isolated by plastic adhesion were compared to the subpopulation Sca-1+Lin-CD45--derived MSCs (SL45-MSCs). The neurite growth-promoting properties of both MSC populations were quantified in VTA/SN+PFC mouse co-cultures. For this purpose, the MSCs were seeded on glass slides that were placed underneath the co-cultures. A significantly enhanced neurite density within the co-cultures was induced by both bulk BM-MSCs and SL45-MSCs. SL45-MSCs increased neurite density to a higher degree. The characterization of both MSC populations revealed that the frequency of fibroblast colony forming units (CFU-f ) is 105-fold higher in SL45-MSCs. SL45-MSCs were morphologically more homogeneous and expressed higher levels of nestin, BDNF and FGF2 compared to bulk BM-MSCs. Thus, this work emphasizes the vast potential for molecular targeting with respect to the development of therapeutic strategies in the enhancement of neurite regrowth.:Table of contents Abbreviations 1 1. Introduction 2 1.1 The dopaminergic system 2 1.2 Neurite regeneration following mechanical lesions of the CNS 7 1.3 Organotypic brain slice co-cultures 8 1.4 Promising substances and cells to enhance neuroregeneration 10 1.5 The aim of the thesis 14 2. The original research articles 16 2.1 Phosphodiesterase 2 inhibitors promote axonal outgrowth in organotypic slice co-cultures 17 2.2 Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures 35 2.3 Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model 50 3. References 66 Appendices 73 Summary 73 Zusammenfassung 78 Curriculum Vitae 84 Track Record 85 Selbständigkeitserklärung 87 Acknowledgments 88
57

Identification of pathways in liver repair potentially targeted by secretory proteins from human mesenchymal stem cells

Winkler, Sandra, Hempel, Madlen, Brückner, Sandra, Tautenhahn, Hans-Michael, Kaufmann, Roland, Christ, Bruno January 2016 (has links)
Background: The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT) and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor) signalling pathways as relevant networks. Relationships to transforming growth factor beta(TGF-beta) and hypoxia-inducible factor 1-alpha (HIF1-alpha) signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration.
58

Comparison of Platelet-Rich Plasma and VEGF-Transfected Mesenchymal Stem Cells on Vascularization and Bone Formation in a Critical-Size Bone Defect

Kasten, Philip, Beverungen, Mirjam, Lorenz, Helga, Wieland, Julia, Fehr, Michael, Geiger, Florian January 2012 (has links)
Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF165-transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
59

Entwicklung neuartiger Scaffolds für das Tissue Engineering mittels Flocktechnologie

Walther, Anja 05 August 2010 (has links)
Flocktechnologie ist eine im Bereich der Textiltechnik angewandte Methode, bei der kurze Fasern nahezu senkrecht auf ein vorher mit Klebstoff beschichtetes Substrat aufgebracht werden. In der vorliegenden Arbeit wurde die elektrostatische Beflockung als Methode zur Herstellung von porösen, dreidimensionalen Scaffolds für das Tissue Engineering von Knorpel und Knochen etabliert. Dieser neuartige Scaffoldtyp wurde eingehend charakterisiert und in Zellversuchen im Hinblick auf seine Biokompatibilität untersucht. Dabei zeigte sich, dass verschiedene Zellen im Scaffold proliferieren und differenzieren können. Die in der Arbeit beschriebenen Flockscaffolds stellen somit eine vielversprechende Matrix für die Therapie von Gelenkknorpeldefekten dar.
60

Polyhydroxybutyrate als Scaffoldmaterial für das Tissue Engineering von Knochen

Wollenweber, Marcus 10 May 2012 (has links)
In drei inhaltlich abgeschlossen Teilen werden Fragestellungen bearbeitet, die sich mit dem Einsatz von Polyhydroxybutyraten als Scaffoldmaterialien für das Tissue Engioneering von Knochen beschäftigen. Zunächst wird ein Prozess optimiert, in dem mittels Verpressen und Auslösen von Platzhaltern (Porogen) poröse Träger (Scaffolds) aus Poly-3-hydroxybuttersäure (P3HB) sowie aus P3co4HB hergestellt werden. Diese Scaffolds werden in der Folge mechanisch und strukturell charakterisiert, wobei Druckfestigkeit, Dauerfestigkeit und Viskoelastizität untersucht werden. Im Ergebnis finden sich mehrere Kandidaten, die für die weitere Testung im Tierversuch in Frage kommen. Weiter wird das Abbauverhalten von schmelzgeponnenen P3HB-Fäden untersucht. Dabei wird ein beschleunigtes Modellsystem gewählt, das noch möglichst nahe am physiologischen Fall aber ohne biologisch aktive Komponente (zB. Enzyme) definiert wurde. Die Charakterisierung bedient sich hier der Gelpermeationschromatographie (GPC), des gasgestützten Elektronenrastermikroskops (ESEM), der differentiellen Thermoanalyse (DSC) und der Rasterkraftmikroskopie. Als Ergebnis zeichnete sich ab, dass neben der hydrolytischen Degradation im Gegensatz zu PHB mit kleinerer spezifischer Oberfläche bei den Fäden auch Erosion zum Abbau beiträgt. Eine partikuläre Freisetzung wird nicht beobachtet. Im dritten Teil werden textile Scaffolds aus P3HB mit einer künstlichen extrazellulären Matrix aus Chondroitinsulfaten (CS) und Kollagen versehen. Dem CS kann hier ein positiver Einfluss auf die osteogene Differenzierung von humanen mesenchymalen Stammzellen (hMSC) nachgewiesen werden. Dies wird zum einen durch die verstärkte Expression der alkalischen Phosphatase (ALP) sowie durch die Hochregulation von Proteinen ersichtlich, die bei der osteogenen Differenzierung essentiell sind. In wenigen Gene-Arrays lässt sich ebenfalls erkennen, dass die osteogene Differenzierung durch CS positiv beeinflusst wird. Insbesondere frühe Marker wie ZBTB16 und IGFBPs werden hier identifiziert. Basierend auf den Teilergebnissen wird am Ende ein Beitrag geliefert, der das Tissue Engineering insbesondere für überkritische Röhrenknochendefekte als Methode interessant erscheinen lässt. Dabei werden mechanische Lasten durch konventionelle Fixateure aufgenommen und der Defektraum durch den mehrfachen Einsatz von bio-funktionalisierten flachen Scaffolds gefüllt.:1. Vorwort 3 2. Allgemeine Einführung 5 2.1 Der Knochen 5 2.1.1 Die Knochenbildung 5 2.1.2 Zur Anatomie und Physiologie des Knochens 7 2.2 Tissue Engineering 11 2.2.1 Zelltypen für das Tissue Engineering von Knochen 12 2.2.2 Scaffold Design im Tissue Engineering von Knochen 13 2.3 Polyhydroxyalkanoate 13 2.4 Tissue Engineering am Röhrenknochen 16 2.4.1 Poly(3-hydroxybutyrat)-Scaffolds für das Tissue Engineering von Knochenersatz 17 2.4.2 Matrix Engineering 18 2.5 Ziel der Arbeit 19 3. Mechanik poröser PHB-Scaffolds 21 3.1 Einleitung 21 3.2 Materialien und Methoden 23 3.2.1 Polyhydroxybutyrate und Porogene 23 3.2.2 Uniaxiales Heißpressen 24 3.2.3 Mikrographie 26 3.2.4 Dynamische Differenzkalorimetrie (DSC) 26 3.2.5 Mechanische Druckversuche 26 3.2.6 Mikrocomputertomographie (μCT) 27 3.2.7 Zellviabilität auf den Scaffolds 28 3.3 Ergebnisse 29 3.3.1 Mikrographie 29 3.3.2 Mikrocomputertomographie (μCT) 33 3.3.3 Druckversuche 37 3.3.4 Dynamische Differenzkalorimetrie (DSC) 40 3.3.5 Zellviabilität 40 3.4 Diskussion 40 3.5 Schlussfolgernde Zusammenfassung 46 4. Degradation von P3HB-Fasern 47 4.1 Degradation von Polyhydroxyalkanoaten 47 4.2 Materialien und Methoden 49 4.2.1 Herstellung und Vorbehandlung textiler P3HB-Konstrukte 49 4.2.2 Mechanische Prüfung 50 4.2.3 Beschleunigte Degradation 50 4.2.4 Untersuchung der Oberfläche 50 4.2.5 Dynamische Differenzkalorimetrie (DSC) 51 4.2.6 Gel-Permeations-Chromatographie (GPC) 51 4.3 Ergebnisse 52 4.3.1 Mechanische Tests 52 4.3.2 Die Charakterisierung der Oberfläche 52 4.3.3 Thermische Fasereigenschaften.55 4.3.4 Untersuchung der Molekulargewichte in der GPC 58 4.4 Diskussion 60 4.5 Schlussfolgernde Zusammenfassung 64 5. hMSC auf textilen Scaffolds 67 5.1 Einleitung 67 5.2 Material und Methoden 68 5.2.1 Erzeugung der P3HB-Scaffolds 68 5.2.2 Die Immobilisierung der EZM-Komponenten auf den Scaffolds 69 5.2.3 Isolation, Vorkultur, Besiedlung und Kultur der humanen mesenchymalen Vorläuferzellen 69 5.2.4 Kombinierte Bestimmung von ALP, MTT und Proteingehalt 71 5.2.5 Mikroskopische Untersuchungen 72 5.2.6 Nachweis der Kalziummineralisierung 73 5.2.7 Quantitative real time reverse transcribing polymerase chain reaction (rt-PCR) 73 5.2.8 cRNA Microarray-Untersuchung 74 5.2.9 Zusätzliche Experimente 75 5.3 Ergebnisse 76 5.3.1 Vorhergehende Untersuchung 76 5.3.2 Rasterelektronen-Mikroskopie 77 5.3.3 Konfokale Laser-Scanning-Mikroskopie 79 5.3.4 ALP-Aktivität, SDH-Aktivität und Proteingehalt 82 5.3.5 Mineralisierende Kalziumabscheidung 86 5.3.6 rt-PCR 87 5.3.7 cRNA Microarray-Untersuchung 90 5.3.8 Kulturen von hMSC mit Chondroitinsulfat als gelöstem Zusatz 93 5.4 Diskussion 93 5.5 Schlussfolgernde Zusammenfassung 98 6. Zusammenfassung 101

Page generated in 0.0577 seconds