• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 29
  • 22
  • 7
  • 1
  • 1
  • Tagged with
  • 176
  • 176
  • 37
  • 32
  • 30
  • 29
  • 28
  • 27
  • 26
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Large pore mesoporous silicas for application in protein adsorption, enzyme immobilisation and drug delivery

Ritchie, Lyndsey K. January 2009 (has links)
A range of mesoporous materials based on SBA-15, KIT-6 and FDU-12 have been prepared using neutral block copolymers Pluronic P123 and F127 and characterised using methods including electron microscopy and nitrogen adsorption. Typically the materials have a hexagonal (p6mm) or cubic (Fm3m and Ia-3d) symmetry and pore geometry and are rendered porous by either calcination or solvent extraction. Organic functional groups were incorporated into the silica walls of the materials by co-condensation in the form of propyl thiols and additives in the form of alkanes were added to control pore size and geometry. The effects of temperature, additives, organic functionalisation, synthesis time and sol-gel composition were investigated and the resulting materials were tested as supports for protein adsorption, enzyme immobilisation, and drug delivery. Two FDU-12 materials of differing entrance and cavity sizes were used to adsorb a range of proteins with molecular weight 17 to 160 kDa to determine if there was a size exclusion effect. It was seen that the larger pore material was able to adsorb proteins of a larger size (molecular weight 105 kDa) and an exclusion effect was observed when the dimension of the proteins became too great (larger than 130 kDa). There was no clear trend for the smaller pore material where each protein was adsorbed to some extent by the material but apart from the smallest protein, myoglobin, mainly on the surface and not within the pores. The adsorption of the lipase B from Candida Antartica, CALB, was studied on a range of mesoporous supports with their templates removed by either calcination or extraction. The effect of pore size and functionalisation was investigated in terms of maximum loading and rate of loading. By functionalising the KIT-6 material the maximum loading of CALB was reduced from 45.5 to 32 mg/g whereas functionalising the FDU-12 material increased the maximum from 33 to 42.5 mg/g. The activity of the immobilised CALB was measured by enantioselective transesterification of (R)-1-phenylethanol in methyltetrabutyl ether (MTBE). The effect of loading, surface functionalisation and reusability in organic media were investigated. Functionalisation with propyl thiol was seen to increase the rate of conversion after 30 minutes for both KIT-6 and FDU-12 materials. Selected FDU-12 and KIT-6 materials with window sizes from 6 to 12 nm and with and without functionalisation were used to carry out a drug release study using Bovine serum albumin (BSA). BSA was loaded onto the material and the uptake quantified using nitrogen adsorption, elemental analysis, and thermogravimetric analysis. The release of BSA into simulated body fluid at 37 ºC was measured using HPLC. Functionalisation was seen to have little effect. The type of cubic morphology controlled the rate at which the BSA was released. The KIT-6 3D channel material exhibited a burst release initially followed by a steady release of BSA whereas the mesocage FDU-12 material had a slower and more linear release profile, closer to that desired.
52

ADDRESSING CHALLENGES IN CATALYSIS AND ENERGY: SELECTIVE GRAFTING FUNCTIONALITY ONTO MESOPOROUS SILICAS AND ORGANIC HYDRIDES FOR THE REGENERATION OF AMMONIA BORANE, A HYDROGEN STORAGE MATERIAL

WEBB, JONATHAN DOUGLAS 12 September 2011 (has links)
Ordered mesoporous silicas have been shown to have a variety of useful applications ranging from adsorbents for containments to supports for catalysts. While these materials have received a good deal of attention in the literature there is still much opportunity for new technologies. We present research describing a novel approach to incorporate functionality onto the pore surfaces of these materials as well as a highly active catalyst for the Suzuki-Miyaura reaction. Our approach to selectively graft functionality on to the pore walls of the mesoporous silicas SBA-15 and MCM-41 involves treating the materials loaded with a structure directing agent (SDA), with hexamethyldisilazane that passivates the external surface through silylation. Once the SDA is removed the mesopores can be functionalized selectively using standard methods. A test designed to look at the passivation layer is also described. The catalyst developed is designated Pd-SBA-15-SH(g) and it is active for the Suzuki-Miyaura reaction. The activity, recyclability and leaching of Pd-SBA-15-SH(g) was found to be superior to related materials. A mechanistic analysis suggests the catalyst is a reservoir for soluble Pd metal. A key challenge that is holding back wide scale application of ammonia borane (NH3BH3) as a hydrogen storage material for mobile applications is the dearth of regeneration strategies. Presented are our forays into the development of an organic hydride based regeneration strategy. The first phase of the project focused on the reaction between Hantzsch esters and B(C6F5)3. N-substituted Hantzsch esters were found to transfer hydride to boron in >90 % yield. Mechanistic analysis of the reaction suggests either a SET mechanism or a highly asynchronous transition state. A novel hydride transfer equilibrium promoted by B(C6F5)3 was observed and it operated at temperatures below -10 ºC. N,N-ditertbutyl-dihydroimidazole is also an effective hydride donor to B(C6F5)3 as well as other Lewis acids that are more relevant mimics to those invoked in regeneration schemes. When the redistribution of B(SPh)3 is carried out with N,N-ditertbutyl-dihydroimidazole in the presence of NEt3 and CH2Cl2 at 50 ºC, BH2(NEt)3(SPh) is formed. CH2Cl2 functions as a thiol scavenger under the reaction conditions. 1-Octene trapping experiments provided indirect evidence for the formation of diborane, a critical component in the regeneration of NH3BH3. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-09-09 14:51:54.697
53

Photothermal effects and mesoporous silica encapsulation of silicon nanocrystals

Regli, Sarah Unknown Date
No description available.
54

BIOMOLECULE LOCALIZATION AND SURFACE ENGINEERING WITHIN SIZE TUNABLE NANOPOROUS SILICA PARTICLES

Schlipf, Daniel M 01 January 2015 (has links)
Mesoporous silica materials are versatile platforms for biological catalysis, isolation of small molecules for detection and separation applications. The design of mesoporous silica supports for tailored protein and biomolecule interactions has been limited by the techniques to demonstrate biomolecule location and functionality as a function of pore size. This work examines the interaction of proteins and lipid bilayers with engineered porous silica surfaces using spherical silica particles with tunable pore diameters (3 – 12 nm) in the range relevant to biomolecule uptake in the pores, and large particle sizes (5 - 15 µm) amenable to microscopy imaging The differentiation of protein location between the external surface and within the pore, important to applications requiring protein protection or catalytic activity in pores, is demonstrated. A protease / fluorescent protein system is used to investigate protein location and protection as a function of pore size, indicating a narrow pore size range capable of protein protection, slightly larger than the protein of interest and approaching the protease dimensions. Selective functionalization, in this case exterior-only surface functionalization of mesoporous particles with amines, is extended to larger pore silica materials. A reaction time dependent functionalization approach is demonstrated as the first visually confirmed, selective amine functionalization method in protein accessible supports. Mesoporous silica nanoparticles are effective supports for lipid bilayer membranes and membrane associated proteins for separations and therapeutic delivery, although the role of support porosity on membrane fluidity is unknown. Transport properties of bilayers in lipid filled nanoparticles as a function of pore diameter and location in the particle are measured for the first time. Bilayer diffusivity increases with increasing pore size and is independent of bilayer location within the core, mid or cap of the particle, suggesting uniform long range bilayer mobility in lipid filled pores. Application of lipid bilayers on mesoporous silica was examined for membrane associated proteins A unique method to adhere functional proteins in lipid bilayers on mesoporous silica particles is established using vesicles derived from cell plasma membranes and their associated proteins. This method of membrane protein investigation retains proteins within native lipid membranes, stabilizing proteins for investigation on supports.
55

NANOFILTRATION MEMBRANES FROM ORIENTED MESOPOROUS SILICA THIN FILMS

Wooten, Mary K 01 January 2014 (has links)
The synthesis of mesoporous silica thin films using surfactant templating typically leads to an inaccessible pore orientation, making these films not suitable for membrane applications. Recent advances in thin film synthesis provide for the alignment of hexagonal pores in a direction orthogonal to the surface when templated on chemically neutral surfaces. In this work, orthogonal thin film silica membranes are synthesized on alumina supports using block copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as the template. The orthogonal pore structure is achieved by sandwiching membranes between two chemically neutral surfaces, resulting in 90 nm thick films. Solvent flux of ethanol through the membrane demonstrates pore accessibility and suggests a silica pore size of approximately 10 nm. The permeability of ions and fluorescently tagged solutes (ranging from 4,000 to 70,000 Da) is used to demonstrate the membrane’s size selectivity characteristics. A size cut off occurs at 69,000 Da for the model protein BSA. By functionalizing the silica surface with a long chained alkyl group using n-decyltriethoxysilane (D-TEOS), the transport properties of the membranes can be altered. Contact angle measurements and FTIR results show the surface to be very hydrophobic after functionalization. Solvent flux of ethanol through the silica thin film membrane is similar before and after functionalization, but water flux decreases. Thin film silica membranes show much promise for applications in catalysis, bio-sensing, and affinity separations.
56

Modified mesoporous silica membranes for separation applications

Kim, Hyung Ju 27 August 2014 (has links)
The main theme of this dissertation is the fabrication and analysis of modified mesoporous silica membranes for separation applications. Synthesis methods for mesoporous silica membranes have been developed to enhance the transport performance and quality of the membranes, such as permeability, pore volume, and surface area. Then, synthesized membranes were modified with different organic groups to tailor selectivity in separations. The collected studies of modified mesoporous silica membranes showed that appropriate functionalization on newly synthesized novel membranes leads to promising structural and permeation properties. First, a seeded growth method was developed for synthesis of MCM-48 membranes on alumina supports, thereby extending the seeded growth technique used for zeolite membranes to mesoporous silica membrane synthesis. The surface properties of the MCM-48 membranes were then modified by silylation with hexamethyldisilazane (HMDS). In comparison to MCM-48 membranes previously synthesized by the in situ growth technique, much less silica infiltration into the alumina support was observed. The pore structure of the MCM-48 membranes demonstrated that a large accessible pore volume was available for molecular permeation and pore modification to tailor selectivity. The gas permeation properties of the calcined and silylated MCM-48 membranes were consistent with a Knudsen-like mechanism, albeit with a substantial influence of gas-solid interactions in the mesopores. The silylated MCM-48 membranes were evaluated for pervaporative separation of ethanol (EtOH), methyl ethyl ketone (MEK), and ethyl acetate (EA) from their dilute aqueous solutions. The synthesized membranes exhibited high pervaporative separation factors and organic fluxes. The selective separation of organic/water mixtures with MCM-48 membranes were attributed to both the organophilic nature of the surface and the effective pore size of the silylated mesopores. Next, the synthesis and organic/water separation properties of mesoporous silica membranes supported on low-cost and scalable polymeric (polyamide-imide) hollow fibers and modified by trimethylsilylation with HMDS was studied. Thin, defect-free membranes that exhibited high gas permeances consistent with Knudsen-like diffusion through the mesopores were prepared. Silylation of these membranes did not affect the integrity of the mesoporous silica structure and the underlying polymeric hollow fiber, but led to capping of the surface silanol groups in the mesopores with trimethylsilyl groups. The silylated mesoporous membranes were evaluated for pervaporative separation of EtOH, MEK, EA, iso-butanol, and n-butanol from their dilute aqueous solutions. The membranes showed higher separation factors than those of flat membranes, along with high organic fluxes. The large increase in hydrophobicity of the membranes upon silylation allowed upgrading of the feed mixtures to permeate streams with considerably higher organic content. The selective separation of organic/water mixtures with the fiber-supported mesoporous silica membranes was attributed to both the organophilic nature of the surface (yielding good adsorption selectivity) and the effective pore size of the silylated mesopores (giving good fluxes). Comparison with other types of organic/water separation membranes revealed that the present silylated membrane platform shows good promise for use in organic/water separation applications due to its high flux, scalable and low-cost fabrication methodology, and good separation factors that can be further enhanced by tailoring the mesopore modification chemistry. Further, the gas transport properties of aziridine-functionalized mesoporous silica membranes on polymeric hollow fibers have also investigated. The mesoporous membranes were amine-functionalized with aziridine and their transport properties were studied to understand the effects of surface functionalization on gas separations. This new hybrid aminosilica membrane showed interesting and counter-intuitive N₂ selective permeation properties in dry CO₂/N₂ separations. Detailed characterization of the membrane structure and its permeation behavior showed that such behavior was due to the strong adsorption of CO₂, leading to reduced gas flux because of CO₂-induced amine crosslinking in the mesopores. This hyper-branched aminosilica membrane showed CO₂ selective properties when applied to humid gas permeation. Water molecules in the humid gas affected the adsorption of CO₂ molecules by causing a lower degree of crosslinking, allowing facilitated transport of CO₂.
57

Infra-red laser applications in the reproductive sciences : improving safety for assisted reproductive technology and developing novel research tools

Davidson, Lien M. January 2017 (has links)
Assisted reproductive technology (ART) has been rapidly expanding since the birth of Louise Brown, the first test tube baby, in 1978. Although an increasingly complex array of laboratory skills and procedures have been developed for infertility treatments, the success rate of ART remains low. In an attempt to make ART safer and more efficient, international medical practice is trending towards single embryo transfers and the use of innovative, sophisticated technologies to identify promising gametes and embryos with the highest potential to generate a pregnancy. Laser technology is increasingly being used to accomplish these aims. The application of lasers for ART has been successfully employed in clinical practice for some time now and is continually the subject of investigative research in order to generate new methods to improve operations. Moreover, lasers serve as a powerful tool at the forefront of investigative research in the reproductive sciences, assisting in broadening our understanding of reproductive and developmental biology. Nevertheless, there is a paucity of literature pertaining to the safe standardisation of such laser procedures with evidence at the molecular level. The primary aim of this thesis was to optimise applications of laser technology for clinical ART and research applications in the reproductive sciences. This thesis utilised the mouse embryo model to investigate potential deleterious effects of different laser treatment applications, both by the operator and hardware manufacturer. Safe and unsafe laser operator parameters were elucidated by assessing deleterious effects to the plasma membrane integrity, blastocyst survival rate, DNA fragmentation levels, and changes in gene expression of key developmental genes. The effect of altering the laser hardware to lower the power output was evaluated and it was determined that if a lower power laser is used to deliver a set amount of energy over a longer period of time, a smaller amount of damage is incurred. Work in this thesis also established a new method in which laser technology can be used as a research tool for the reproductive sciences, by creating a novel stimuli-responsive laser-activated nanoparticle delivery system with spatial control and increased efficiency in a mammalian cell model. The field of reproductive science continues to benefit greatly from laser application clinically to improve infertility treatments, and in research, to elucidate mechanisms underlying infertility, with a hope of increasing our understanding and eventually developing new treatment options.
58

Synthesis, characterisation and testing of Au/SBA-15 catalysts for elimination of volatile organic compounds by complete oxidation at low temperatures

Iro, Emmanuel January 2017 (has links)
Optimised SBA-15 mesoporous silica with high surface area (794 m2/g) and very thick pore wall (~ 5.0 nm), which maintained its structural and hydrothermal stability in steam, up to 800 °C was successfully synthesised and used as support material for synthesis of Au/SBA-15 catalysts. Gold nano-particles of different sizes were anchored on SBA-15 using cationic gold precursor (Au(en2)Cl3), post or one pot functionalisation of SBA-15 with MPTMS, APTMS or phosphine ligand before gold loading via HAuCl4 gold precursor. Characterisation of the catalysts were done using the following techniques: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction spectroscopy (XRD), Fourier – Transform Infrared Spectroscopy (FT-IR), Nitrogen Physisorption and Hiden Analytical CATLAB system. Characterisation results confirmed that gold particle size, dispersion of gold on SBA-15 and the oxidation state of gold had significant influence on the catalytic activity of Au/SBA-15 catalysts. The most active and stable Au/SBA-15 catalyst (Au-0.6Mdp/SBA-15), prepared by one pot synthesis of SBA-15 with MPTMS before gold loading, had high surface area of 726 m2/g, with the smallest gold particle size of 1.3 nm, well dispersed on SBA-15 support. Hydrogen reduced Au/SBA-15 catalysts were more active than their as-synthesised forms in complete oxidation of non-chlorinated VOCs, with the most active Au/SBA-15 catalyst (Au-0.6Mdp/SBA-15) attaining 100 % acetone conversion at 250 °C and 11% propane conversion at and 300 °C. The as-synthesised form of Au-0.6Mdp/SBA-15 catalyst attained 100 % acetone conversion at 280 °C and 1.8 % propane conversion at 300 °C. The reduced Au-0.6Mdp/SBA-15 catalyst was also more active than the as-synthesised form in complete oxidation of aromatic and olefin VOC mixture (BTEXB of 820 ppm). For chlorinated VOCs using dichloromethane (DCM) as model compound, only the as-synthesised form of Au/SBA-15 catalyst was active, attaining 100 % DCM conversion at 305 °C. The reduced form of Au/SBA-15 catalyst was inactive, probably ii due to instant poisoning from strong attachment of chlorides with metallic gold. A novel coating technique (fine spray of catalyst, colloidal silica and methyl cellulose slurry on heated reactor at 150°C), which drastically reduced the amount of catalyst required for VOC oxidation was developed to introduce only 2.5 mg of Au-0.6Mdp/SBA-15 catalyst in the channels of a micro-reactor. Higher conversion of propane (VOC model compound) was achieved with the catalytic micro-reactor. The use of the micro-reactor has the potential to reduce the amount of expensive catalyst used and attain higher VOC conversions at lower temperatures, which could boost the commercial viability of this noble catalytic device for elimination of indoor VOCs.
59

Functionalized Nano-structured Silicas for Trace Collection from Natural Waters

Nell, Kara 21 November 2016 (has links)
Throughout this body of work, three classes of sorbent materials were created and optimized, each designed to selectively capture organics or desired metals from natural water sources. These target species included toxic heavy metals, uranium, rare earths, and simple organics, such as benzene. Each class of sorbent materials is functionalized nanostructured silicas, created by the development of several functionalization methods: utilizing thiol-ene click chemistry, aromatic interactions, and the formation of inclusion complexes. Thiol-ene click surface modification gave rise to sorbent materials with impressive affinities for both soft metals, such as gold, and harder metals, such as uranium and rare earth elements. Applications of these materials for aqueous mining of uranium and rare earth elements from various natural water sources are presented. Two classes of materials based on supramolecular functionalization methods were prepared. In the first class, aromatic interactions allowed for surface functionalization with thiol containing aryl ligands. These materials proved to have an excellent affinity for heavy metals from natural waters, and hold promise for regenerable nanostructured silica sorbents. The second class of materials utilizes the ability of β-cyclodextins to form inclusion complexes with small molecule organics, such as benzene. The formation of inclusion complexes drove both surface functionalization and the capture of small molecule organics from aqueous solutions. This work serves to inspire the development of novel functionalized nanostructured sorbents for trace collection of toxic organics from aqueous streams. These supramolecular methods for surface medication can be expanded to nanomaterials at large. This dissertation includes both previously published/unpublished and co-authored material. / 10000-01-01
60

Sílicas mesoporosas HMS e MCM-41 modificadas com grupos contendo nitrogênio e enxofre como adsorventes para íons metálicos em solução. / Mesoporous silica modified with groups containing nitrogen and sulfur as adsorbents for metal ions in solution.

Germano, Ana Fernanda de Souza 01 June 2012 (has links)
Made available in DSpace on 2015-05-14T13:21:17Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 3236722 bytes, checksum: c565548ef9bd6c5867bb5994542c2bdf (MD5) Previous issue date: 2012-06-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Mesoporous organic-inorganic hybrids are promising candidates in the field of adsorption. In this work new adsorbents based on mesoporous silica MCM-41 and HMS types organofunctionalized with groups containing nitrogen and sulfur using the method after functionalization were synthesized. The HMS silica was obtained from neutral n-dodecylamine surfactant and modified with organosilanes containing one, two or three nitrogen atoms, then submitted to the functionalization reaction with mercaptoacetic acid or ethylene sulfide. The MCM-41 silica, obtained from CTAB template was modified with the organosilane containing one nitrogen atom and functionalized with carbon disulfide. The set of HMS functionalized silicas were used in the adsorption process of divalent cations Cd, Co, Cu, Ni and Pb from aqueous solution and kinetic study. All HMS and MCM-41 matrices were characterized through elemental analysis, thermogravimetry, surface area, infrared spectroscopy, nuclear magnetic resonance of 13C and 29Si and X-ray diffraction techniques. The elemental C, H, N and S analysis suggest success on the immobilization of ethylene sulfide, thioglycolic acid ligands, pointing probably to an ethylene sulfide molecules polymerization. The matrix MCM-41 showed a small degree functionalization, 0.09 mmol g -1 of sulfur anchored to the surface. HMS functionalized matrices demonstrated having adsorption capacity of Cd2+, Co2+, Cu2+, Ni2+ and Pb2+, being the best results observed for Cu2+ cation. All systems studied obey the pseudo-second order kinetics of reaction. The values of Cu2+ ions adsorbed on the matrices HMS containing one, two or three nitrogen atoms and mercaptoacetic acid were 0.86, 1.08 and 1.06 mmol g-1, respectively. For matrices containing one, two or three nitrogen atoms and ethylene sulfide, values were 0.83, 1.38 and 1.01 mmol per gram, respectively. / Híbridos mesoporosos orgânico-inorgânicos são candidatos promissores na área de adsorção. Neste trabalho, foram sintetizados novos adsorventes baseados em sílicas mesoporosas do tipo HMS e MCM-41 organofuncionalizadas com grupos contendo nitrogênio e enxofre empregando o método pós funcionalização. A sílica HMS foi obtida a partir do direcionador n-dodecilamina e modificada com os organossilanos contendo um, dois ou três átomos de nitrogênio, em seguida submetidas a reações de funcionalização com ácido tioglicólico ou etilenossulfeto. A sílica MCM-41, obtida a partir do direcionador CTAB, foi modificada apenas com o organossilano contendo um átomo de nitrogênio e funcionalizada com dissulfeto de carbono. O conjunto de sílicas HMS funcionalizadas foram aplicadas em processos de adsorção dos cátions divalentes Cd, Co, Cu, Ni e Pb em solução aquosa, sendo realizado o estudo cinético. As matrizes HMS e MCM-41 puras, modificadas e funcionalizadas foram caracterizadas através das técnicas de análise elementar, termogravimetria, determinação de área superficial, espectroscopia na região do infravermelho, ressonância magnética nuclear de 13C e 29Si e difratometria de raios-X. Os dados de análise elementar de C, H, N e S sugerem o sucesso da imobilização dos ligantes ácido tioglicólico e etilenossulfeto apontando para possível polimerização das moléculas de etilenossulfeto. A matriz MCM-41 apresentou pequeno grau de funcionalização, 0,09 mmol g-1 de enxofre ancorado à superfície. As matrizes HMS funcionalizadas demonstraram capacidade para adsorção dos cátions Cd2+, Co2+, Cu2+, Ni2+ e Pb2+, sendo os melhores resultados verificados para o cátion Cu2+. Todos os sistemas estudados obedecem à cinética de reação de pseudo-segunda ordem. As quantidades dos cátions Cu2+ fixos adsorvidos nas matrizes HMS contendo um, dois ou três átomos de nitrogênio e o ligante ácido tioglicólico foram: 0,86; 1,08 e 1,06 mmol g-1, respectivamente. Para as matrizes contendo um, dois ou três átomos de nitrogênio e o ligante etilenossulfeto os valores foram: 0,83; 1,38 e 1,01 mmol por grama, respectivamente.

Page generated in 0.094 seconds