Spelling suggestions: "subject:"mesure dde mahler"" "subject:"mesure dde kahler""
1 |
Polylogarithmes et mesure de MahlerGu, Jarry 09 1900 (has links)
Le but principal de ce mémoire est de calculer la mesure de Mahler logarithmique d’une famille de polynômes à trois variables x^n + 1 + (x^(n−1) + 1)y + (x − 1)z. Pour réaliser cet objectif, on intègre des régulateurs définis sur des complexes motiviques polylogarithmiques. Pour comprendre ces régulateurs, on explore les propriétés des polylogarithmes et démontre quelques identités polylogarithmiques. Ensuite, on utilise les régulateurs afin de simplifier l’intégrante. Notre résultat est une formule qui relie la mesure de Mahler de la famille de polynômes susmentionnée au dilogarithme de Bloch–Wigner et à la fonction zêta de Riemann. / The main purpose of this thesis is to compute the logarithmic Mahler measure of the
three variable polynomial family xn + 1 + (xn−1 + 1)y + (x − 1)z. In order to accomplish
this, we integrate regulators defined on polylogarithmic motivic complexes. To understand
these regulators, we explore the properties of polylogarithms and show some polylogarithmic
identities. The regulators are then applied to simplify the integrand. Our result is a formula
relating the Mahler measure of the family of polynomials to the Bloch–Wigner Dilogarithm
and the Riemann zeta function.
|
2 |
Mesure de Mahler supérieure de certaines fonctions rationellesLechasseur, Jean-Sébastien 08 1900 (has links)
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique.
On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes
multiples en termes de valeurs spéciales de fonctions L. On termine avec la
réduction complète d’un cas particuler. / The 2-higher and 3-higher Mahler measure of some rational functions are given in terms
of special values of the Riemann zeta function, a Dirichlet L-function and multiple polylogarithms. Our results generalize those obtained in [10] for the classical Mahler measure.
We improve one of our results by providing a reduction for a certain linear combination
of multiple polylogarithms in terms of Dirichlet L-functions. We conclude by
giving a complete reduction of a special case.
|
3 |
Mesure de Mahler supérieure de certaines fonctions rationellesLechasseur, Jean-Sébastien 08 1900 (has links)
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique.
On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes
multiples en termes de valeurs spéciales de fonctions L. On termine avec la
réduction complète d’un cas particuler. / The 2-higher and 3-higher Mahler measure of some rational functions are given in terms
of special values of the Riemann zeta function, a Dirichlet L-function and multiple polylogarithms. Our results generalize those obtained in [10] for the classical Mahler measure.
We improve one of our results by providing a reduction for a certain linear combination
of multiple polylogarithms in terms of Dirichlet L-functions. We conclude by
giving a complete reduction of a special case.
|
4 |
La mesure de Mahler d’une forme de WeierstrassGiard, Antoine 05 1900 (has links)
No description available.
|
5 |
Empilements de sphères et bêta-entiersVerger-Gaugry, Jean-Louis 09 June 2006 (has links) (PDF)
Les objets considérés dans cette thèse sont les empilements de sphères égales, principalement de $R^n$, et les beta-entiers, pour lesquels on utilise indifféremment le langage des empilements de sphères ou celui des ensembles uniformément discrets pour les décrire. Nous nous sommes concentrés sur les problèmes suivants : (i) aspects métriques et topologiques de l'espace des empilements de sphères pour lequels nous prouvons un théorème de compacité qui généralise le Théorème de Sélection de Mahler relatif aux réseaux, (ii) les relations entre trous profonds et la densité par la constante de Delone ainsi que la structure interne asymptotique, en couches, des empilements les plus denses, (iii) les empilements autosimilaires de type fini pour lesquels nous montrons, pour chacun, l'existence d'un schéma de coupe-et-projection associé à un entier algébrique (l'autosimilarité) dont le degré divise le rang de l'empilement, dans le contexte des quasicristaux mathématiques, (iv) les empilements de sphères sur beta-réseaux, dont l'étude a surtout consisté à comprendre l'ensemble discret localement fini $Z_\beta$ des beta-entiers et à proposer une classification des nombres algébriques qui complémente celle de Bertrand-Mathis, reportée dans un article de Blanchard, et où la mesure de Mahler de beta intervient naturellement.
|
6 |
Generalized Mahler measure of a family of polynomialsRoy, Subham 12 1900 (has links)
Le présent mémoire traite une variation de la mesure de Mahler où l'intégrale de définition est réalisée sur un tore plus général. Notre travail est basé sur une famille de polynômes tempérée originellement étudiée par Boyd, P_k (x, y) = x + 1/x + y + 1/y + k avec k ∈ R_{>4}. Pour le k = 4 cas, nous utilisons des valeurs spéciales du dilogarithme de Bloch-Wigner pour obtenir la mesure de Mahler de P_4 sur un tore arbitraire (T_ {a, b})^2 = {(x, y) ∈ C* X C* : | x | = a, | y | = b } avec a, b ∈ R_{> 0}. Ensuite, nous établissons une relation entre la mesure de Mahler de P_8 sur un tore (T_ {a, √a} )^2 et sa mesure de Mahler standard. La combinaison de cette relation avec des résultats de Lalin, Rogers et Zudilin conduit à une formule impliquant les mesures de Mahler généralisées de ce polynôme données en termes de L' (E, 0). Au final, nous proposons une stratégie pour prouver des résultats similaires dans le cas général k> 4 sur (T_ {a, b})^2 avec certaines restrictions sur a, b. / In this thesis we consider a variation of the Mahler measure where the defining integral is performed over a more general torus. Our work is based on a tempered family of polynomials originally studied by Boyd, Boyd P_k (x, y) = x + 1/x + y + 1/y + k with k ∈ R_{>4}. For the k = 4 case we use special values of the Bloch-Wigner dilogarithm to obtain the Mahler measure of P_4 over an arbitrary torus (T_ {a, b})^2 = {(x, y) ∈ C* X C* : | x | = a, | y | = b } with a, b ∈ R_{> 0}. Next we establish a relation between the Mahler measure of P_8 over a torus(T_ {a, √a} )^2 and its standard Mahler measure. The combination of this relation with results due to Lalin, Rogers, and Zudilin leads to a formula involving the generalized Mahler measure of this polynomial given in terms of L'(E, 0). In the end, we propose a strategy to prove some similar results for the general case k > 4 over (T_ {a, b})^2 with some restrictions on a, b.
|
7 |
Approaches to Boyd’s conjectures and their applicationsWu, Gang 12 1900 (has links)
Dans cette thèse, nous considérons quatre cas de conjectures de Boyd pour la mesure de Mahler de polynômes. Le premier cas concerne un polynôme associé à une courbe de genre 1, deux autres cas couvrent des courbes de genre 2, et le dernier cas traite d’une courbe de genre 3.
Pour le cas de la courbe de genre 1, nous étudions une identité conjecturée par Boyd et prouvée par Boyd et Rodriguez-Villegas. On trouve un expression de la mesure de Mahler donnée par une combinaison linéaire de certaines valeurs du dilogarithme de Bloch-Wigner. En combinant cela avec le résultat prouvé par Boyd et Rodriguez-Villegas, nous pouvons établir certaines identités entre différentes valeurs du dilogarithme de Bloch-Wigner.
Pour les problèmes liés aux courbes de genre 2, nous utilisons le régulateur elliptique pour récupérer des identités entre les mesures de Mahler des certaines familles de courbes de genre 2 qui ont ́eté conjecturées par Boyd et prouvèes par Bertin et Zudilin en différenciant le paramètre des formules de la mesure de Mahler et en utilisant des identités hypergéométriques.
Pour le cas impliquant la courbe de genre 3, nous utilisons le régulateur elliptique pour prouver une identité entièrement nouvelle entre les mesures de Mahler d’une famille polynomiale de genre 3 et d’une famille polynomiale de genre 1 qui à été initialement conjectur ́ee par Liu et Qin.
Comme nos preuves pour les cas des courbes des genres 2 et 3 impliquent le régulateur, elles éclairent la relation des mesures de Mahler des familles des genres 2 ou 3 avec des valeurs spéciales des fonctions L associées aux familles de genre 1. / In this dissertation, we consider four cases of Boyd’s conjectures for the Mahler measure of polynomials. The first case involves a polyno- mial defining a genus 1 curve, two other cases cover genus 2 curves, and the final case deals with a genus 3 curve.
For the case of the genus 1 curve, we study an identity conjectured by Boyd and proven by Boyd and Rodriguez-Villegas. We find an expression of the Mahler measure given by a linear combination of some values of the Bloch-Wigner dilogarithm. Combining this with the result proven by Boyd and Rodriguez-Villegas, we can establish some identities among different values of the Bloch-Wigner dilogarithm.
For the problems related to the genus 2 curves, we use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the parameter in the Mahler measure formulas and using hypergeometric identities.
For the case involving the genus 3 curve, we use the elliptic regulator to prove an entirely new identity between the Mahler measures of a genus 3 polynomial family and of a genus 1 polynomial family that was initially conjectured by Liu and Qin.
Since our proofs for the cases of genus 2 and 3 curves involve the regulator, they yield light into the relation of the Mahler measures of the genus 2 or 3 families with special values of the L-functions associ- ated to the genus 1 families.
|
Page generated in 0.0524 seconds