• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse haute fréquence de l'équation de Helmholtz avec terme source

Fouassier, Elise 12 December 2005 (has links) (PDF)
Nous étudions la limite haute fréquence de l'équation de Helmholtz avec terme source dans le cas où la fréquence des oscillations dues à la source est identique à celle des modes propres de l'opérateur de Helmholtz qui régit la propagation des ondes, de sorte que des intéractions résonantes peuvent se produire. Nous quantifions le transport asymptotique de l'énergie via l'utilisation des mesures de Wigner (ou mesures semi-classiques).<br />Nos résultats concernent deux cadres d'étude : le cas de deux sources quasi-ponctuelles (pour lequel nous nous limitons à un indice de réfraction constant), et le cas d'un indice de réfraction discontinu le long d'une interface séparant deux milieux inhomogènes non bornés.<br />Dans les deux cas, nous montrons que, sous des hypothèses géométriques appropriées, la mesure de Wigner est l'intégrale le long des rayons de l'optique géométrique et jusqu'en temps infini, d'une source d'énergie qui mesure les interactions résonantes entre la source et la solution.
2

Analyse semiclassique de l'équation de Schrödinger à potentiels singuliers / Semiclassical analysis of the Schrödinger equation with singular potentials

Chabu, Victor 07 November 2016 (has links)
Dans la première partie de cette thèse nous étudions la propagation des mesures de Wigner associées aux solutions de l'équation de Schrödinger à potentiels présentant des singularités coniques, et nous montrons qu'elles sont transportées par deux différents flots Hamiltoniens, l'un sur le fibré cotangent à la variété des singularités et l'autre ailleurs dans l'espace des phases, à moins d'un phénomène d'échange entre ces deux régimes qui peut se produire quand des trajectoires du flot extérieur atteignent le fibré cotangent. Nous décrivons en détail et le flot et la concentration de masse autour et sur la variété singulière, et illustrons avec des exemples quelques questions issues de la faute d'unicité des trajectoires classiques sur les singularités en dépit de l'unicité des solutions quantiques, ce qui refute tout principe de sélection classique, mais qui n'empêche dans certains cas de résoudre complètement le problème.Dans la deuxième partie nous présentons un travail mené en collaboration avec Dr. Clotilde Fermanian et Dr. Fabricio Macià où nous analysons une équation de type Schrödinger pertinente à l'étude semiclassique de la dynamique d'un électron dans un cristal avec impuretés et montrons que, dans la limite où la période caractérisique du réseau cristallin est sufisamment petite par rapport à la variation du potentiel extérieur représentant les impuretés, cette équation peut être approximée par une équation de masse effective, ou, plus généralement, que sa solution se décompose en modes de Bloch et que chacun d'eux satisfait une équation de masse effective spécifique à son énergie de Bloch / In the first part of this thesis we study the propagation of Wigner measures linked to solutions of the Schrödinger equation with potentials presenting conical singularities and show that they are transported by two different Hamiltonian flows, one over the bundle cotangent to the singular set and the other elsewhere in the phase space, up to a transference phenomenon between these two regimes that may arise whenever trajectories in the outsider flow lead in or out the bundle. We describe in detail either the flow and the mass concentration around and on the singular set and illustrate with examples some issues raised by the lack of uniqueness for the classical trajectories on the singularities despite the uniqueness of quantum solutions, dismissing any classical selection principle, but in some cases being able to fully solve the problem.In the second part we present a work in collaboration with Dr. Clotilde Fermanian and Dr. Fabricio Macià where we analyse a Schrödinger-like equation pertinent to the semiclassical study of the dynamics of an electron in a crystal with impurities, showing that in the limit where the characteristic lenght of the crystal's lattice can be considered sufficiently small with respect to the variation of the exterior potential modelling the impurities, then this equation is approximated by an effective mass equation, or, more generally, that its solution decomposes in terms of Bloch modes, each of them satisfying an effective mass equation specificly assigned to their Bloch energies
3

Théorie de champ-moyen et dynamique des systèmes quantiques sur réseau / Mean-field theory and dynamics of lattice quantum systems

Rouffort, Clément 10 December 2018 (has links)
Cette thèse est dédiée à l'étude mathématique de l'approximation de champ-moyen des gaz de bosons. En physique quantique une telle approximation est vue comme la première approche permettant d'expliquer le comportement collectif apparaissant dans les systèmes quantiques à grand nombre de particules et illustre des phénomènes fondamentaux comme la condensation de Bose-Einstein et la superfluidité. Dans cette thèse, l'exactitude de l'approximation de champ-moyen est obtenue de manière générale comme seule conséquence de principes de symétries et de renormalisations d'échelles. Nous recouvrons l'essentiel des résultats déjà connus sur le sujet et de nouveaux sont prouvés, particulièrement pour les systèmes quantiques sur réseau, incluant le modèle de Bose-Hubbard. D'autre part, notre étude établit un lien entre les équations aux hiérarchies de Gross-Pitaevskii et de Hartree, issues des méthodes BBGKY de la physique statistique, et certaines équations de transport ou de Liouville dans des espaces de dimension infinie. Résultant de cela, les propriétés d'unicité pour de telles équations aux hiérarchies sont prouvées en toute généralité utilisant seulement les caractéristiques génériques de problèmes aux valeurs initiales liés à de telles équations. Egalement, de nouveaux résultats de caractères bien posés et un contre-exemple à l'unicité d'une hiérarchie de Gross-Pitaevskii sont prouvés. L’originalité de nos travaux réside dans l'utilisation d'équations de Liouville et de puissantes techniques de transport étendues à des espaces fonctionnels de dimension infinie et jointes aux mesures de Wigner, ainsi qu'à une approche utilisant les outils de la seconde quantification. Notre contribution peut être vue comme l'aboutissement d'idées initiées par Z. Ammari, F. Nier et Q. Liard autour de la théorie de champ-moyen. / This thesis is dedicated to the mathematical study of the mean-field approximation of Bose gases. In quantum physics such approximation is regarded as the primary approach explaining the collective behavior appearing in large quantum systems and reflecting fundamental phenomena as the Bose-Einstein condensation and superfluidity. In this thesis, the accuracy of the mean-field approximation is proved in full generality as a consequence only of scaling and symmetry principles. Essentially all the known results in the subject are recovered and new ones are proved specifically for quantum lattice systems including the Bose-Hubbard model. On the other hand, our study sets a bridge between the Gross-Pitaevskii and Hartree hierarchies related to the BBGKY method of statistical physics with certain transport or Liouville's equations in infinite dimensional spaces. As an outcome, the uniqueness property for these hierarchies is proved in full generality using only generic features of some related initial value problems. Again, several new well-posedness results as well as a counterexample to uniqueness for the Gross-Pitaevskii hierarchy equation are proved. The originality in our works lies in the use of Liouville's equations and powerful transport techniques extended to infinite dimensional functional spaces together with Wigner probability measures and a second quantization approach. Our contributions can be regarded as the culmination of the ideas initiated by Z. Ammari, F. Nier and Q. Liard in the mean-field theory.

Page generated in 0.0718 seconds