231 |
Studies on Secondary Metabolites of the Formosan Gorgonian Isis hippuris and Virgularia junceaChen, Shin-Pin 27 July 2001 (has links)
Abstract
In our continuing studies on the chemical constituents of Taiwanese octocorals, the gorgonian coral Isis hippuris and the sea pen coral Virgularia juncea, which were collected from the coast of Green Island and Peng-Hung Islands, respectively, have been the subjects of our investigations. Six compounds, including two new steroids, hippuristerones A and E (1 and 2), along with three known steroids 3£]-hydroxy-5£\-pregnan -20-one (3), prenga-4-ene-3,20-dione (4), prenga-1,4-diene-3,20-dione (5) and a known sesquiterpene subergorgic acid (6) were isolated from I. hippuris. Four compounds, incoulding a new sesquterpene, junceol A (7) and two known diterpenoids, sclerophytin A (8), cladiellisin (9) and a known steroid 24-methylenecholesterol (10) were isolated from V. juncea.
The structures of above isolates were determined by physical (mp and optical rotation) and extensive spectral (UV, IR, MS, HRMS, 1D and 2D NMR) analysis and by comparison with the related physical and spectral data from other known compounds. The structure, including the relative configuration of hippuristerone A (1) was further confirmed by a single-crystal X-ray analysis.Furthermore, the relative configuration of hippuristerone E (2) was supported by the chemical dynamics calculations.
|
232 |
Metabolic factors influencing fatigue during a 90 second maximum muscle contractionTucker, David C. January 2009 (has links) (PDF)
Thesis (M.A.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed Jan. 21, 2010). Includes bibliographical references (p. 47-53).
|
233 |
Synthetic studies on the spiroacetal moiety of Stenocarpin, a metabolite of Diplodia maydis /Weldegebriel, Kibrom Asmerom. January 2003 (has links)
Thesis (M.Sc.(Biochemistry))--University of Pretoria, 2003. / Includes summary. Also available online.
|
234 |
The effects of supplemented metabolites on lifespan and stress response pathways in Caenorhabditis elegansEdwards, Clare B. 01 January 2015 (has links)
Understanding how metabolites contribute to anaplerosis, antioxidant effects, and hormetic pathways during aging is fundamental to creating supplements and dietary habits that may decrease age-associated disease and decline, thus improving the quality of life in old age. In order to uncover metabolic pathways that delay aging, the effects of large sets of metabolites associated with mitochondrial function on lifespan were investigated.
Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in C. elegans. Addition of fumarate and succinate also extended lifespan and all three metabolites activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductaseF48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation.
Each of the twenty amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine were found to extend lifespan at least to a small extent at one or more of the 3 concentrations tested with serine, histidine, and proline showing the largest effects. In most cases, amino acid supplementation did not extend lifespan in eat-2 worms, a model of dietary restriction or in daf-16, sir-2.1, rsks-1 (S6 kinase), or aak-2 (AMPK) longevity pathway mutants or in worms fed RNAi to skn-1, the C. elegans Nrf2 homolog. Serine and tryptophan addition further protected worms from Alzheimer’s amyloid-beta toxicity. Tryptophan and its catabolites nicotinic acid, picolinic acid, and NAD further induced a broad heat shock response. These results indicate that dietary amino acid imbalance and amino acid catabolism affect organismal longevity.
The ketone body beta-hydroxybutyrate (βHB) is a histone deacetylase (HDAC) inhibitor and has been shown to be protective in many disease models, but its effects on aging are not well studied. Therefore we determined the effect of βHB supplementation on the lifespan of C. elegans. βHB supplementation extended mean lifespan by approximately 20%. RNAi knockdown of HDACs hda-2 or hda-3 also increased lifespan and further prevented βHB-mediated lifespan extension. βHB-mediated lifespan extension required the DAF-16/FOXO and SKN-1/Nrf longevity pathways, the sirtuin SIR-2.1, and the AMP kinase subunit AAK-2. βHB did not extend lifespan in a genetic model of dietary restriction indicating that βHB is likely functioning through a similar mechanism. βHB addition also upregulated ΒHB dehydrogenase activity and increased oxygen consumption in the worms. RNAi knockdown of F55E10.6, a short chain dehydrogenase and SKN-1 target gene, prevented the increased lifespan and βHB dehydrogenase activity induced by βHB addition, suggesting that F55E10.6 functions as an inducible βHB dehydrogenase. Furthermore, βHB supplementation delayed Alzheimer's amyloid-beta toxicity and decreased Parkinson's alpha-synuclein aggregation. The results indicate that D-βHB extends lifespan through inhibiting HDACs and through the activation of conserved stress response pathways.
Aging is a progressive disease caused by the time dependent decline of an organism and is the primary risk factor for many human ailments, including heart disease, cancer, and Alzheimer’s disease. Uncovering metabolic pathways and metabolites that delay the onset of age-related decline was the primary drive of this investigation.
|
235 |
Microchip-capillary electrophoresis devices with dual-electrode detectors for determination of polyphenols, amino acids andmetabolites in wine and biofluidsDu, Fuying., 杜富滢. January 2012 (has links)
The electrochemical detector provides a promising detection mode for capillary electrophoresis (CE) due to its excellent sensitivity, good portability, high selectivity, easy miniaturization, low capital and running cost. To widen its scope for determining trace analytes in complex samples, three dual-electrode detectors were fabricated to enable the determination of electro-inactive analytes, to assess co-eluted peaks and to give a large enhancement of the detection sensitivity by modifying electrode surface using multi-walled carbon nanotubes (MWNTs).
To determine trace non-electroactive amino acids present in human tears, a serial dual-electrode detector was developed using an upstream on-capillary Pt film electrode to oxidize bromide to bromine at +1.0 V and a downstream Pt disk electrode to detect the residual bromine at +0.2 V after their reaction with amino acids eluted out from the separation capillary. The bromide reagent was introduced after CE separation by a newly designed coaxial post-column reactor fabricated onto the PMMA chip. Using optimized CE buffer containing 20 mM borate, 20 mM SDS at pH 9.8, L-glutamine, L-alanine and taurine were baseline separated with detection limits ranging from 0.56-0.65 μM and a working range of 2-200 μM for L-glutamine and of 2-300 μM for both L-alanine and taurine. Method reliability was established by close to 100% recoveries for spiked amino acids and good agreement between the measured and the literature reported amino acid concentrations in tears.
For the determination of polyphenols in wine, a microchip-CE device was fabricated with a dual-opposite carbon fiber microelectrode operated in a parallel mode to assess peak purity. Under optimized conditions, (+)-catechin, trans-resveratrol, quercetin, (-)-epicatechin and gallic acid were baseline separated within 16 min with detection limits ranging from 0.031- 0.21 mg/L and repeatability of 2.0-3.3 % (n=5). The use of an opposite dual-electrode enables the simultaneous determination of peaks and measurement of their current ratios at +0.8 V and +1.0 V vs Ag/AgCl. The capability of using current ratio to identify the presence of co-migrating impurities was demonstrated in a mixed standard solution with overlapping (+)-catechin and (-)-epicatechin peaks and in a commercial red wine with interfering impurities. Matching of both the migration time and the current ratio reduce false positive and validate polyphenol quantitation in red wine.
Lastly, a dual-opposite MWNTs modified carbon fiber microelectrode (CFME) was developed to determine the biomarkers (4-nitrophenol, 4-nitrophenyl-glucuronide and 4-nitrophenyl-sulfate) needed to assess exposure to methyl parathion. Use of the MWNTs modified CFME showed a much higher sensitivity than bare CFME, with a detection limit of 0.46 μM for 4-nitrophenol. Baseline separation of all three biomarkers was obtained within 31 min by a 45 cm long capillary under 12 kV in a 20 mM phosphate buffer at pH 7.0. The method developed was successfully utilized to determine low levels of biomarkers in human urine without using complex pretreatment steps and delivered recoveries ranging from 95.3 - 97.3% and RSDs within 5.8% (n=3). Using a parallel dual-electrode detector was shown to deliver reliable results with matching current ratios and comparable migration time to those obtained from biomarker standards. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
236 |
Metabolomics Strategies for Discovery of Biologically Active or Novel MetabolitesVinayavekhin, Nawaporn January 2012 (has links)
Along with genes and proteins, metabolites play important roles in sustaining life. There remains much to be learned about the in vivo roles of metabolites. Metabolomics is a comparative tool to study global metabolite levels in samples under various conditions. This dissertation describes the development and application of metabolomics strategies for discovery of biologically active or novel metabolites with priori knowledge about genes, proteins, or phenotypes. The power of metabolomics for discovery of novel metabolites from genes is demonstrated through the work with the pyochelin (pch) gene cluster. Comparison of the extracellular metabolomes of pch gene cluster mutants to the wild-type Pseudomonas aeruginosa (strain PA14) identified 198 ions regulated by the pch genes. In addition to known metabolites, a pair of novel metabolites were characterized as 2-alkyl-4,5-dihydrothiazole-4-carboxylates (ATCs). Subsequent assays revealed that ATCs bind iron and that their production is regulated by iron levels and dependent on pchE gene in the pch gene cluster. Metabolomics can also facilitate discovery of active metabolites from proteins, as shown in the work with orphan nuclear receptor Nur77. We applied a metabolomics platform for detected protein-metabolite interactions to identify lipids that bind to Nur77. Using this approach, we discovered that the Nur77 ligand-binding domain (Nur77LBD) enriched unsaturated fatty acids (UFAs) in tissue lipid mixtures. Subsequent biophysical and biochemical assays indicate that UFAs bind to Nur77LBD to cause changes in the conformation and oligomerization of the receptor. Last, analogous to classic fractionation experiments, metabolomics can also be applied to discover active metabolites from phenotypes. Using combination of genetics, biochemistry, and metabolomics, we identified three phenazine compounds produced by Pseudomonas aeruginosa that are toxic to the nematode Caenorhabditis elegans. 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of PCA and pyocyanin are strictly pH-dependent at non-overlapping pH ranges. The diversity within a class of metabolites can be used to modulate bacterial toxicity in different environmental niches. / Chemistry and Chemical Biology
|
237 |
Molecular Mapping and Characterization of Phenylpropanoid Pathway Genes in Common Bean (Phaseolus vulgaris L.)Yadegari, Zeinab 06 September 2013 (has links)
Common bean is a nutritionally and economically important food crop and a major source of dietary protein in many developing countries throughout the world. Seed coat colour and size in this crop are the main factors determining its marketability in different parts of the world. Flavonoid compounds that are responsible for seed coat colour in beans have been shown to have anti-oxidant, anti-proliferative, anti-tumor, anti-inflammatory, and pro-apoptotic activities. They also may enhance the resistance of beans to pest and disease. A better understanding of the relationships between seed coat colour and flavonoid metabolism in the seed coat may help breeders to select for more nutritionally-beneficial bean varieties. The objective of this research was to test the hypothesis that the genes determining colour in beans are structural and regulatory genes of the phenylpropanoid pathway.
The map positions of phenylpropanoid genes were determined in two recombinant inbred populations. Segregation patterns of 18 phenylpropanoid pathway genes in the BAT93 × Jalo EEP 558 RIL population and five phenylpropanoid pathway genes in OAC Rex × SVM Taylor were used to place them on the linkage maps for these populations. Five out of 18 genes were mapped within 2-17 cM of colour gene loci in the BAT93 × Jalo EEP 558 RIL population.
The sequences of central genes of the phenylpropanoid pathway were determined by sequencing 6 BAC clones selected with probes for two PAL genes, two CHS genes, DFR, and Myb. The functional annotations of the BAC clones were determined and the similarities between bean phenylpropanoid genes and their corresponding orthologs in other plant species were investigated.
A recently developed approach of whole genome sequence comparison was utilized to compare the microsynteny of the sequenced BAC clones with regions of the soybean genome. The physical locations of BAC clones were verified on the bean genome and their counterpart locations on the soybean genome were confirmed. The results agreed with previous studies that indicated that bean genome segments have two homologous segments in soybean and confirmed the high degree of microsynteny that is shared between bean and soybean.
|
238 |
Chemical Characterization and Absorption of Phytochemicals From Mangifera indica L.Krenek, Kimberly Ann 16 December 2013 (has links)
It was hypothesized that ester-linked gallic acid glycosides could be absorbed and metabolized in vivo due to the instability of an ester-linked glycosides at neutral pH. To evaluate in vivo absorption of Mangifera Indica, L. var. Keitt polyphenolics, it was first necessary to chemically characterize the compounds present using HPLC-MSn analysis. Mango pulp and extracts were also incubated with a pectinase, cellulase, pectinase with ß-glucosidase activity, and a pure ß-glucosidase to learn the extent of hydrolysis with potential application to enhancing bioavailability as a result of incubation to increase mango juice yield. After which the same extracts were assessed in differentiated Caco-2 cells to discern stability at physiological pH and to characterize metabolite formation in vitro. Finally, human urinary metabolites were characterized after 10 day consumption of 400 g in 11 individuals. Mass spectroscopic characterization and HPLC quantification of mango pulp revealed for the first time two monogalloyl glucosides (MGGs) with distinct differences in their glycoside linkages, with the ester form dominating, as well as the presence of five other phenolic acid glycosides; hydroxybenzoic acid glucoside, courmaric glucoside, ferulic acid glucoside, and sinapic acid mono and di-glucosides. Six oxygenated carotenoid derivatives were identified for the first time in a phytochemical extract, namely, a phytohormone, abscisic acid and its glycoside, two catabolism products of abscisic acid, dihydrophasic acids, and two hydroxy-dimethyl decadiene-dioic acid glucopiranosylesters. Gallotannins ranging from tetra-galloyl glucosides to nona-galloyl glucosides were also identified in the pulp, but not quantified. Clearzyme 200XL and Rapidase AR2000 were the most effective at increasing juice yield of mango pulp due to their pectinase action. Cz reduced the amount of ester-linked MGG by 70% after 4 hours of incubation while Rap hydrolyzed the ether linked MGG. The instability of ester-linked galloyl-glycosides at pH 7.4 was characterized by HPLC-MS and after only four hours of incubation a shift from HWM tannins (>8GG) to LMW (<8GG) occurred and resulted in 25 mg/L free gallic acid. Caco-2 cells metabolized gallic acid, MGG from a mango extract, and a gallotannin extract into O-methyl gallic acid indicating catechol-O-methyl transferase (COMT) as a major metabolizing enzyme for gallic acid. Urinary metabolites were identified by HPLC-MSn in dependant scans. O-methylgallic acid-O-sulfate was identified as the major metabolite 0-6 hours post consumption, followed by O-methylgallic acid at a lower concentration. The presence of gallic acid metabolites in the urine indicates absorption of ester-linked glycosides. Colonic metabolites were detected beginning 3-6 hours after consumption of mango, and were identified as pyrogalloyl derivatives. They are hypothesized to be the products of microbial breakdown of gallotannins. Daily consumption of mango for 10 days increased the concentration of O-methylgallic acid-O-sulfate, but was not significant.
|
239 |
Metabolic Engineering of Isoflavonoid Biosynthesis in Tobacco and White Clover.Franzmayr, Benjamin January 2011 (has links)
Isoflavonoids are a class of plant secondary metabolites which have multiple biological roles in plants as pest feeding deterrents, phytoalexins and signals to rhizobial microbes. Some isoflavonoids, or their breakdown products, are estrogenic when ingested by animals, and pastures with high levels of the isoflavonoid formononetin can cause sterility in ewes. White clover has low levels of isoflavonoids and is susceptible to pests like the clover root weevil. The overall aim of this project was to test whether isoflavonoids could be manipulated in white clover through metabolic engineering.
The genes of the key isoflavonoid biosynthesis enzymes have been cloned from a range of legumes and three major genes, chalone reductase (CHR), isoflavone synthase (IFS) and isoflavonoid O-methyltransferase (IOMT), were cloned from white clover in this study. The white clover IFS2_12 gene was expressed in transgenic tobacco. Genistein, an isoflavonoid that is not naturally present in tobacco, was detected in the IFS-expressing tobacco, thus confirming the functionality of the IFS2_12 gene. Tobacco plants were transformed with ANT1, a transcription factor that induces the production of anthocyanins that share precursors with the isoflavonoid biosynthesis pathway. When IFS was expressed in red tobacco leaves, where anthocyanin biosynthesis was occurring, the levels of genistein were greater than in anthocyanin-free green leaves.
White clover was transformed to overexpress the cloned IFS2_12 gene and some transformants had greater levels of IFS gene expression, up to 12.9 times the average wild type level. However, these transformants did not produce formononetin levels greater than the wild-type. A gene fusion of alfalfa chalcone isomerase (CHI), which produces the precursors naringenin and liquiritigenin, and soybean IFS, which converts the precursors to genistein and daidzein, respectively, was received from the Noble Foundation. Transgenic white clover plants expressing IFS/CHI were produced using a novel method that also regenerated wild-type clones of the transgenic plants. When compared with their wild-type clones, two IFS/CHI transformants produced higher levels of formononetin, thus supporting the suggestion that isoflavonoid levels can be increased in white clover through overexpression of isoflavonoid biosynthesis genes.
|
240 |
Structure and stereochemistry of compounds from Cassipourea species.Taylor, Craig William. January 1993 (has links)
Abstract available in pdf file.
|
Page generated in 0.05 seconds